Limit search to available items
Book Cover
E-book
Author Blatchley, Ernest R., III

Title Photochemical Reactors : Theory, Methods, and Applications of Ultraviolet Radiation / Ernest R. Blatchley III
Published Newark : John Wiley & Sons, Incorporated, 2022
©2023

Copies

Description 1 online resource (604 pages)
Contents Cover -- Title Page -- Copyright Page -- Contents -- Preface -- Acknowledgements -- About the Companion Website -- Chapter 1 Background and History -- 1.1 Introduction -- 1.2 Early Applications, Discoveries -- 1.3 Development of Modern Principles of Photochemistry -- 1.4 Laws of Photochemistry: People and Personalities -- 1.4.1 Grotthuss-Draper Law: First Law of Photochemistry -- 1.4.2 Stark-Einstein Law: Second Law of Photochemistry -- 1.4.3 Bunsen-Roscoe Law: The Law of Reciprocity -- 1.5 Natural Photochemical Processes -- 1.6 Atmospheric Chemistry -- 1.7 Early Discoveries and Applications -- 1.7.1 Photography -- 1.7.2 Disinfection Science -- 1.7.3 Engineering Applications of UV Radiation in Drinking Water Disinfection -- 1.7.4 Engineering Applications of UV Radiation in Disinfection of Municipal Wastewater -- 1.8 Contemporary Applications -- 1.8.1 Disinfection of Water -- 1.8.2 Direct Photolysis in Water Treatment -- 1.8.3 Disinfection of Air (UVGI) and Surfaces -- 1.9 Market Size and Growth -- 1.10 Objectives for Book -- 1.11 Approaches Used in Book -- Notes -- References -- Chapter 2 Photochemical Reactions -- 2.1 Introduction -- 2.2 Laws of Photochemistry -- 2.3 Energy in Photochemical Processes -- 2.4 Kinetics -- 2.4.1 Kinetics of Thermal Chemical Reactions -- 2.4.2 Kinetics of Photochemical Reactions: Monochromatic Radiation Source, Electromagnetic Energy Basis -- 2.4.2.1 Limiting Case 1: Opaque Solution -- 2.4.2.2 Limiting Case 2: Transparent Solution -- 2.4.2.3 Kinetics of Photochemical Reactions: Photon Basis -- 2.4.2.4 Limiting Case 1: Opaque Solution -- 2.4.2.5 Limiting Case 2: Transparent Solution -- 2.5 Summary of Expressions to Describe Photochemical Kinetics: Monochromatic Radiation Sources -- 2.5.1 Kinetics of Photochemical Reactions: Polychromatic Radiation Source, Photon Basis -- 2.6 Summary -- Notes -- References
Chapter 3 Photochemical Reactor Theory -- 3.1 Introduction -- 3.2 Basic Principles of Material (Molar or Mass) Balance -- 3.3 Basic Chemical Reactor Models -- 3.3.1 Batch Reactor Model -- 3.3.2 Ideal Continuous-Flow Stirred Tank Reactor Model (CFSTR) -- 3.3.3 Ideal Plug-Flow Reactor Model (PFR) -- 3.3.4 CFSTR Cascade Model -- 3.3.5 Effects of Mixing on Performance in Chemical Reactors -- Material Balance Approach -- 3.3.6 Time as a Master Variable -- Residence Time Distribution Function -- 3.3.7 Effects of Mixing on Performance in Chemical Reactors -- Segregated-Flow Model -- 3.4 Models for Photochemical Reactors -- 3.4.1 Dose as the Independent (Master) Variable -- 3.4.2 Batch Reactor -- 3.4.3 Fluence Rate Fields in Photoreactors -- 3.4.4 Effects of Mixing on Performance of UV Photoreactors -- 3.4.5 Prediction of Performance in Photochemical Reactors -- Segregated-Flow Model -- 3.5 Executable Model -- 3.6 Summary -- Notes -- References -- Appendix 3.A Derivation of Relationship to Describe Transient (Start-up) Behavior in an Ideal CFSTR -- Appendix 3.B Derivation of Normalized Residence Time Distribution Functions for CFSTR Cascade Systems -- 3.B.1 Single CFSTR -- 3.B.2 Cascade of Two Identical CFSTRs -- 3.B.3 Cascade of Three Identical CFSTRs -- 3.B.4 Generalization of Results to a Cascade of n CFSTRs in Series -- Appendix 3.C Proof of Segregated-flow Model Based on Probability Theory -- Chapter 4 Ultraviolet Radiation Sources -- 4.1 Introduction -- 4.2 Incandescence -- 4.3 Solar Radiation -- 4.4 Artificial Sources of UV Radiation -- 4.4.1 Gas Discharge Lamps: Mercury Lamps -- 4.4.2 Light-Emitting Diodes (LEDs) -- 4.4.3 Excimer Lamps -- 4.4.4 Lasers -- 4.4.5 Upconversion -- 4.5 Summary -- Notes -- References -- Chapter 5 Actinometry and Radiometry -- 5.1 Introduction -- 5.2 Chemical Actinometry -- 5.2.1 Beam Nonuniformity
5.2.2 Reflection and Refraction -- 5.2.3 Absorption -- 5.2.4 Divergence -- 5.2.5 Absorption by Photoproducts -- 5.2.6 Extent of Absorption by Chemical Actinometer -- 5.2.7 Polychromatic Behavior -- 5.2.8 Alternative Bench-Scale Reactors for Use With Chemical Actinometers -- 5.2.8.1 Rate of Photon Application per Unit Volume of Solution: Ei A -- 5.2.8.2 Effective Path Length: l -- 5.2.9 Chemical Actinometers Used With UV Photoreactors -- 5.2.9.1 Uranyl Oxalate -- 5.2.9.2 Potassium Ferrioxalate -- 5.2.9.3 Iodide/Iodate -- 5.2.9.4 2-Nitrobezaldehyde -- 5.2.9.5 Nucleoside Actinometers -- 5.3 Radiometry -- 5.3.1 Absolute Cryogenic Radiometer (ACR) -- 5.3.2 Thermopile -- 5.3.3 Photomultiplier Tube (PMT) -- 5.3.4 Si Photodiode -- 5.3.5 Spectroradiometer -- 5.3.6 Micro Fluorescent Silica Detector (MFSD) -- 5.4 Summary -- Notes -- References -- Chapter 6 Numerical Models for Simulation of Photochemical Reactor Behavior -- 6.1 Introduction -- 6.2 Fluence Rate (E') Field Models -- 6.2.1 Photon Emission Sub-Models -- 6.2.2 Sub-Models to Account for Optical Behavior -- 6.2.2.1 Reflection and Refraction -- 6.2.2.2 Divergence/Dissipation -- 6.2.2.3 Combination of Absorption (Beer-Lambert Law) and Reflection -- 6.2.3 Fluence Rate Field Models -- 6.2.3.1 Point-Source Summation/Line-Source Integration (PSS/LSI) -- 6.2.3.2 Multiple Segment Source Summation (MSSS) -- 6.2.3.3 Radiative Transfer Equation (RTE) -- 6.2.3.4 Surface Power Apportionment for Cylindrical Excimer Lamps (SPACE) -- 6.2.3.5 Ray Tracing -- 6.3 Computational Fluid Dynamics (CFD) -- 6.3.1 Governing Equations: Fluid Mechanics -- 6.3.1.1 Gravity -- 6.3.1.2 Differential Pressure -- 6.3.1.3 Shear Stress -- 6.3.2 Index (Tensor) Notation -- 6.3.3 Governing Equations: Transport of Reactants -- 6.3.4 Simulations for Systems Operating in the Turbulent Regime
6.3.5 Accuracy of Turbulence Models for Flow Field Simulations -- 6.3.5.1 Open-Channel UV Photoreactor -- Vertical Lamp Orientation -- 6.3.5.2 Closed, Single-Lamp, Annular Reactors -- 6.3.5.3 Closed-Vessel, Cross-Flow, Four-Lamp Reactor -- 6.3.5.4 Reactors with Internal Baffles -- 6.3.6 Process Simulations by CFD-E' Field Modeling -- 6.3.7 Selection of Sub-Models -- 6.3.7.1 Reaction Kinetics Sub-Model -- 6.3.7.2 Fluence Rate Field Sub-Model -- 6.3.7.3 CFD Sub-Model -- 6.3.7.4 General Factors to Consider in Sub-Model Selection -- 6.4 Summary -- Notes -- References -- Appendix 6.A PSS Model Implementation in Spreadsheet Format -- Simulation of Fluence Rate Field in Cylindrical Lamp Reactor -- Simulation of Fluence Rate Field in Flat-Screen Reactor -- Interpretation of Simulation Results -- Chapter 7 Validation of Photochemical Reactors -- 7.1 Introduction -- 7.2 Biodosimetry -- 7.3 Mathematical Descriptions of UV Photoreactor Validation by Biodosimetry -- 7.3.1 Gaussian Dose Distribution, First-Order Kinetics -- 7.3.2 Simulated Dose Distributions, First-Order Kinetics -- 7.3.3 Biodosimetry Experiment -- 7.3.4 Challenge Organisms Commonly Used in Biodosimetry -- 7.3.5 Effects of Variability in Challenge Organism Dose-Response Behavior on Biodosimetry -- 7.3.6 Use of Chemical Actinometers for Reactor Validation -- 7.3.7 Lagrangian Actinometry -- 7.3.8 Convolution Hypothesis -- Theoretical Background -- 7.3.9 Convolution Hypothesis -- Experimental Verification -- 7.3.10 Application of LA -- 7.3.11 Microsphere Dose-Response Behavior -- 7.3.12 Reactor Testing -- 7.3.13 Integration of MFSD and CFD-E' Simulations -- 7.4 UV Photoreactor Validation Protocols -- 7.4.1 Ultraviolet Disinfection Guidance Manual for the Long-Term 2 Enhanced Surface Water Treatment Rule (UVDGM) -- 7.4.2 Österreichisches Normungsinstitut (ÖNORM)
7.4.3 Deutsche Vereinigung des Gas- und Wasserfaches (DVGW) -- 7.4.4 National Water Research Institute (NWRI) -- 7.4.5 NSF/ANSI -- 7.5 Summary -- Appendix 7.A Description of the Error Function and Its Complement -- Notes -- References -- Chapter 8 Methods for Quantification of Microbial Responses to UVC Irradiation -- 8.1 Introduction -- 8.2 Mechanisms of Microbial Inactivation Resulting from UVC Irradiation -- 8.3 Reproductive Cycles of Common Microbial Groups -- 8.3.1 Bacterial Reproduction -- 8.3.2 Replication of Viruses -- 8.3.3 Life Cycle of Protozoa -- 8.3.4 Reproduction of Algae -- 8.4 Lessons Learned from use of Inappropriate Methods -- 8.4.1 Protozoan Parasites -- 8.4.2 Fish Parasites -- 8.4.3 Algae -- 8.4.4 Viruses -- 8.5 Quantification of Viable Microorganisms with UV Disinfection Systems -- 8.5.1 Bacteria -- 8.5.1.1 MPN-DCM -- 8.5.1.2 Membrane Filtration -- 8.5.1.3 Compartment Bag Test -- 8.5.2 Viruses -- 8.5.2.1 Plaque Formation -- 8.5.2.2 Cytopathic Effect (CPE) -- 8.5.3 Protozoa -- 8.5.3.1 Animal Infection -- 8.5.3.2 Cell Culture -- 8.5.4 Algae -- 8.6 Molecular Biology -- 8.6.1 Polymerase Chain Reaction and Related Methods -- 8.6.1.1 Integrated Cell Culture/PCR -- 8.6.1.2 Long Amplicon q-PCR -- 8.6.1.3 Molecular Viability Testing -- 8.6.1.4 Intercalating Dyes/PCR -- 8.7 Summary -- Notes -- References -- Chapter 9 UV Disinfection of Drinking Water and Municipal Wastewater -- 9.1 Introduction -- 9.2 Primary vs. Secondary Disinfection -- 9.3 Motivations for Use of UV-Based Disinfection -- 9.4 Traditional View of Drinking Water and Municipal Wastewater as Separate Domains -- 9.4.1 Differences Between Water and Wastewater Disinfection -- 9.5 Disinfection Kinetics -- 9.5.1 Mathematical Models of UV Disinfection Kinetics -- 9.5.1.1 Single-Event Model -- 9.5.1.2 Series-Event Model -- 9.5.1.3 Multi-Target Model -- 9.5.1.4 Two-Population Models
Notes 9.6 Microbial Repair Processes
Description based on publisher supplied metadata and other sources
Subject Ultraviolet radiation
Photochemistry
Form Electronic book
ISBN 1119871603
9781119871606
1119871352
9781119871354
1119871344
9781119871347