Description |
1 online resource (474 pages) |
Contents |
Cover -- Title Page -- Copyright -- Contents -- Preface -- Acknowledgements -- Chapter 1 A Preview of the Subject of the Book -- 1.1 Symmetry Considerations -- 1.2 Ferroic Materials -- 1.3 Laser Optics -- 1.4 Creating the Trinity -- 1.5 Structure of this Book -- Part I The Ingredients and Their Combination -- Chapter 2 Symmetry -- 2.1 Describing Interactions in Condensed-Matter Systems -- 2.2 Introduction to Practical Group Theory -- 2.3 Crystals -- 2.3.1 Types of Symmetry Operations -- 2.3.1.1 Translations -- 2.3.1.2 Rotations -- 2.3.1.3 Spatial Inversion -- 2.3.1.4 Time Reversal -- 2.3.2 Combinations of Operations -- 2.3.3 Nomenclature -- 2.4 Point Groups and Space Groups -- 2.4.1 Point Groups -- 2.4.1.1 Enantiomorphic Groups -- 2.4.1.2 Crystallographic Point Groups -- 2.4.1.3 Magnetic Point Groups -- 2.4.1.4 Other Types of Point-Group Symmetries -- 2.4.2 Space Groups -- 2.5 From Symmetries to Properties -- 2.5.1 Deriving the Components of the Property Tensors -- 2.5.2 Parity of the Property Tensors -- 2.5.3 Introducing Inhomogeneity -- 2.5.4 Beyond Group Theory: Particularisation -- Chapter 3 Ferroic Materials -- 3.1 Ferroic Phase Transitions -- 3.1.1 Landau-Theoretical Description and Order Parameter -- 3.1.2 First- and Second-Order Phase Transitions -- 3.1.2.1 First-Order Phase Transitions -- 3.1.2.2 Second-Order Phase Transitions -- 3.1.3 Critical Exponents -- 3.1.4 Domain States and Domains -- 3.1.5 Softness -- 3.2 Ferroic States -- 3.2.1 Conjugate Field and Switchability -- 3.2.2 Hysteresis -- 3.2.3 Curie Temperature -- 3.3 Antiferroic States -- 3.4 Classification of Ferroics -- 3.4.1 Ferromagnetism -- 3.4.1.1 Ferromagnetism from Exchange Coupling -- 3.4.1.2 Other Forms of Ferromagnetic Order -- 3.4.1.3 Domains in Ferromagnets -- 3.4.1.4 Exchange-Controlled Magnetic States -- 3.4.1.5 Applications of Magnetically Ordered Materials |
|
3.4.2 Ferroelectricity -- 3.4.2.1 Differences Between Ferroelectricity and Ferromagnetism -- 3.4.2.2 Mechanisms Promoting Ferroelectric Order -- 3.4.2.3 Dielectric States in Crystals -- 3.4.2.4 Applications of Ferroelectrics -- 3.4.3 Ferroelasticity -- 3.4.3.1 Definitions -- 3.4.3.2 Absolute and Relative Spontaneous Strain -- 3.4.3.3 Domains and Domain Walls -- 3.4.3.4 Applications of Ferroelastics -- 3.4.3.5 Antiferroelasticity and Ferrielasticity -- 3.4.3.6 Distortive Transitions -- 3.4.4 Ferrotoroidicity -- 3.4.4.1 Development of the Concept -- 3.4.4.2 Measurability -- 3.4.4.3 Sources of Magnetotoroidal Order -- 3.4.4.4 Ferroic Nature -- 3.4.4.5 Microscopic Sources of Ferrotoroidicity -- 3.4.4.6 Applications of Ferrotoroidic Materials -- 3.4.5 Other Forms of Primary Ferroic Order -- 3.4.6 Higher-Order Ferroics -- 3.4.6.1 Ferromagnetoelectrics and the Linear Magnetoelectric Effect -- 3.4.6.2 Tertiary and Higher-Order Ferroics -- 3.4.6.3 Ambiguity in the Classification of Ferroic States -- 3.4.7 Multiferroics -- 3.4.7.1 Terminology -- 3.4.7.2 Interest in Multiferroics -- 3.4.7.3 Multiferroics with Independent Magnetic and Electric Orders -- 3.4.7.4 Multiferroics with Coupled Magnetic and Electric Orders -- 3.4.7.5 Multiferroicity in Inhomogeneous Systems -- 3.4.7.6 Applications and Trends -- Chapter 4 Nonlinear Optics -- 4.1 Interaction of Materials with the Electromagnetic Radiation Field -- 4.1.1 Hamilton Operator -- 4.1.2 Multipole Expansion -- 4.1.2.1 Electric Dipole -- 4.1.2.2 Magnetic Dipole and Electric Quadrupole -- 4.2 Wave Equation in Nonlinear Optics -- 4.2.1 Derivation of the Wave Equation with an Extended Source Term -- 4.2.2 General Solution of the Wave Equation -- 4.2.3 Four Solutions of Particular Interest -- 4.3 Microscopic Sources of Nonlinear Optical Effects -- 4.4 Important Nonlinear Optical Processes |
|
4.4.1 Two-Photon Sum Frequency Generation -- 4.4.2 Second Harmonic Generation -- 4.4.3 Two-Photon Difference Frequency Generation -- 4.4.4 Optical Parametric Generation -- 4.4.5 Third Harmonic Generation -- 4.5 Nonlinear Spectroscopy of Electronic States -- 4.5.1 Transition Matrix Elements -- 4.5.2 Resonance Behaviour at the Contributing Frequencies -- 4.5.3 Local-Field Corrections -- 4.5.4 Linear Optical Properties at the Contributing Frequencies -- 4.5.5 Phase Matching -- Chapter 5 Experimental Aspects -- 5.1 Laser Sources -- 5.1.1 Nanosecond Laser Systems with Optical Parametric Oscillator -- 5.1.2 Femtosecond Laser Systems with Optical Parametric Amplifier -- 5.2 Experimental Set-Ups -- 5.2.1 Spectral Resolution -- 5.2.1.1 Beam Path for Laser Spectroscopy -- 5.2.1.2 Polarisation-Dependent Measurements -- 5.2.1.3 Spectral Filtering -- 5.2.1.4 Signal Normalisation -- 5.2.2 Imaging by Projection -- 5.2.2.1 Image Resolution -- 5.2.2.2 Camera and Projection -- 5.2.2.3 Phase-Resolved Imaging -- 5.2.3 Imaging by Scanning -- 5.3 Temporal Resolution -- Chapter 6 Nonlinear Optics on Ferroics - An Instructive Example -- 6.1 SHG Contributions from Antiferromagnetic Cr2O3 -- 6.2 SHG Spectroscopy -- 6.3 Topography on Antiferromagnetic Domains -- 6.4 Magnetic Structure in the Spin-Flop Phase -- Part II Novel Functionalities -- Chapter 7 The Unique Degrees of Freedom of Optical Experiments -- 7.1 Polarisation-Dependent Spectroscopy -- 7.1.1 Basic Methodical Aspects -- 7.1.2 Resonance Enhancement of Signals -- 7.1.3 Sublattice Selectivity -- 7.1.4 Separation of Coexisting Types of Order -- 7.1.5 Spectral Identification of Symmetries -- 7.2 Spatial Resolution - Domains -- 7.2.1 Access to Hidden Domain States -- 7.2.1.1 Higher Selectivity -- 7.2.1.2 180∘ Domains -- 7.2.1.3 Translation Domains -- 7.2.1.4 Domains in Novel Types of Ferroics |
|
7.2.2 Domain Microscopy at Different Resolution -- 7.2.2.1 Far-Field Microscopy -- 7.2.2.2 Near-Field Microscopy -- 7.2.3 Domain Topography Below the Optical Resolution Limit -- 7.2.3.1 SHG Contributions at Domain Walls -- 7.2.3.2 SHG Contributions of Sub-Resolution Domains -- 7.2.3.3 Experimental Factors -- 7.2.3.4 Statistical Factors -- 7.2.4 Domain Topography in Three Dimensions -- 7.2.4.1 Scanning Techniques: Phase-Matched Čerenkov SHG -- 7.2.4.2 Projection Techniques: Non-Phase-Matched Bulk SHG -- 7.3 Temporal Resolution - Correlation Dynamics -- 7.3.1 Overview -- 7.3.1.1 Terms and Definitions -- 7.3.1.2 Magnetisation Dynamics -- 7.3.1.3 Classical Macrospin Dynamics -- 7.3.1.4 Three-Temperature Model -- 7.3.1.5 Spins as Quantum-Mechanical Objects -- 7.3.1.6 Magnetisation Versus Magneto-Optics -- 7.3.2 Dynamical Properties of Ferromagnetic Systems -- 7.3.2.1 Magnetisation Dynamics of Metallic Ni by SHG -- 7.3.2.2 Magnetisation Dynamics of Semiconducting EuO by SHG -- 7.3.3 Dynamical Processes in Antiferromagnetic Systems -- 7.3.3.1 Difference in the Dynamics of Ferro- and Antiferromagnets -- 7.3.3.2 Ultrafast Antiferromagnetic Switching -- 7.3.3.3 Antiferromagnetic Switching in Multiferroics -- 7.3.4 Nonlinear Effects in the Few-Terahertz Range -- 7.3.4.1 Linear Terahertz Spectroscopy -- 7.3.4.2 Nonlinear Techniques at Terahertz Frequencies -- 7.3.4.3 Two-Dimensional Terahertz Time-Domain Spectroscopy -- Chapter 8 Theoretical Aspects -- 8.1 Microscopic Sources of SHG in Ferromagnetic Metals -- 8.2 Microscopic Sources of SHG in Antiferromagnetic Insulators -- 8.2.1 Chromium Sesquioxide -- 8.2.2 Hexagonal Manganites -- 8.2.3 Nickel Oxide -- Part III Materials and Applications -- Chapter 9 SHG and Multiferroics with Magnetoelectric Correlations -- 9.1 Type-I Multiferroics -- The Hexagonal Manganites -- 9.1.1 Synthesis and Crystal Structure |
|
9.1.2 Lattice Trimerisation -- 9.1.2.1 The Ferroelectric P63cm Phase -- 9.1.2.2 Ferroelectric SHG Spectra -- 9.1.2.3 Domain States in the P63cm Phase -- 9.1.2.4 The Non-Ferroelectric P3‾c1 Phase -- 9.1.3 Antiferromagnetic Order of the Mn3+ Lattice -- 9.1.4 Magnetic Order of the Rare-Earth System -- 9.1.5 Magnetic Sublattice Interactions -- 9.1.6 Magnetoelectric Sublattice Interactions -- 9.1.6.1 Optical Magnetoelectric Coupling -- 9.1.6.2 Coupling Between Ferroelectric and Antiferromagnetic Domains -- 9.1.6.3 Magnetoelectric Coupling in External Fields -- 9.1.7 Dynamic Correlations -- 9.2 Type-I Multiferroics -- BiFeO3 -- 9.2.1 Synthesis and Crystal Structure -- 9.2.2 Ferroelectric Order -- 9.2.3 Antiferromagnetic Order -- 9.2.4 Magnetoelectric Coupling Effects -- 9.3 Type-I Multiferroics with Strain-Induced Ferroelectricity -- 9.4 Type-II Multiferroics -- MnWO4 -- 9.4.1 Synthesis and Crystal Structure -- 9.4.2 Multiferroic Order -- 9.4.3 SHG Contributions -- Incommensurate SHG -- 9.4.4 Types of Domains -- 9.4.5 Poling Dynamics -- 9.4.6 Multiferroic Domain Walls -- 9.5 Type-II Multiferroics -- TbMn2O5 -- 9.5.1 Synthesis, Crystal Structure, and Magnetic Order -- 9.5.2 Decomposition of Contributions to the Spontaneous Polarisation -- 9.6 Type-II Multiferroics -- TbMnO3 -- 9.6.1 Synthesis, Crystal Structure, and Magnetic Order -- 9.6.2 Domains and Poling -- 9.6.3 Optical Domain Switching -- 9.6.4 Robustness of the Multiferroic State -- 9.7 Type-II Multiferroics with Higher-Order Domain Functionalities -- 9.7.1 Magnetoelectric Inversion of a Domain Pattern -- 9.7.2 Magnetoelectric 'Teleportation' of a Domain Pattern -- Chapter 10 SHG and Materials with Novel Types of Primary Ferroic Orders -- 10.1 Ferrotoroidics -- 10.1.1 Ferrotoroidic LiCoPO4 -- 10.1.1.1 Crystal Structure and Magneto-Toroidal Order -- 10.1.1.2 Observation of Ferrotoroidic Domains |
Notes |
10.1.1.3 Poling in a Toroidal Field |
|
Description based on publisher supplied metadata and other sources |
Form |
Electronic book
|
ISBN |
9783527822799 |
|
3527822798 |
|