Limit search to available items
Book Cover
E-book
Author Fiebig, Manfred

Title Nonlinear Optics on Ferroic Materials
Edition 1st ed
Published Newark : John Wiley & Sons, Incorporated, 2023
©2024

Copies

Description 1 online resource (474 pages)
Contents Cover -- Title Page -- Copyright -- Contents -- Preface -- Acknowledgements -- Chapter 1 A Preview of the Subject of the Book -- 1.1 Symmetry Considerations -- 1.2 Ferroic Materials -- 1.3 Laser Optics -- 1.4 Creating the Trinity -- 1.5 Structure of this Book -- Part I The Ingredients and Their Combination -- Chapter 2 Symmetry -- 2.1 Describing Interactions in Condensed-Matter Systems -- 2.2 Introduction to Practical Group Theory -- 2.3 Crystals -- 2.3.1 Types of Symmetry Operations -- 2.3.1.1 Translations -- 2.3.1.2 Rotations -- 2.3.1.3 Spatial Inversion -- 2.3.1.4 Time Reversal -- 2.3.2 Combinations of Operations -- 2.3.3 Nomenclature -- 2.4 Point Groups and Space Groups -- 2.4.1 Point Groups -- 2.4.1.1 Enantiomorphic Groups -- 2.4.1.2 Crystallographic Point Groups -- 2.4.1.3 Magnetic Point Groups -- 2.4.1.4 Other Types of Point-Group Symmetries -- 2.4.2 Space Groups -- 2.5 From Symmetries to Properties -- 2.5.1 Deriving the Components of the Property Tensors -- 2.5.2 Parity of the Property Tensors -- 2.5.3 Introducing Inhomogeneity -- 2.5.4 Beyond Group Theory: Particularisation -- Chapter 3 Ferroic Materials -- 3.1 Ferroic Phase Transitions -- 3.1.1 Landau-Theoretical Description and Order Parameter -- 3.1.2 First- and Second-Order Phase Transitions -- 3.1.2.1 First-Order Phase Transitions -- 3.1.2.2 Second-Order Phase Transitions -- 3.1.3 Critical Exponents -- 3.1.4 Domain States and Domains -- 3.1.5 Softness -- 3.2 Ferroic States -- 3.2.1 Conjugate Field and Switchability -- 3.2.2 Hysteresis -- 3.2.3 Curie Temperature -- 3.3 Antiferroic States -- 3.4 Classification of Ferroics -- 3.4.1 Ferromagnetism -- 3.4.1.1 Ferromagnetism from Exchange Coupling -- 3.4.1.2 Other Forms of Ferromagnetic Order -- 3.4.1.3 Domains in Ferromagnets -- 3.4.1.4 Exchange-Controlled Magnetic States -- 3.4.1.5 Applications of Magnetically Ordered Materials
3.4.2 Ferroelectricity -- 3.4.2.1 Differences Between Ferroelectricity and Ferromagnetism -- 3.4.2.2 Mechanisms Promoting Ferroelectric Order -- 3.4.2.3 Dielectric States in Crystals -- 3.4.2.4 Applications of Ferroelectrics -- 3.4.3 Ferroelasticity -- 3.4.3.1 Definitions -- 3.4.3.2 Absolute and Relative Spontaneous Strain -- 3.4.3.3 Domains and Domain Walls -- 3.4.3.4 Applications of Ferroelastics -- 3.4.3.5 Antiferroelasticity and Ferrielasticity -- 3.4.3.6 Distortive Transitions -- 3.4.4 Ferrotoroidicity -- 3.4.4.1 Development of the Concept -- 3.4.4.2 Measurability -- 3.4.4.3 Sources of Magnetotoroidal Order -- 3.4.4.4 Ferroic Nature -- 3.4.4.5 Microscopic Sources of Ferrotoroidicity -- 3.4.4.6 Applications of Ferrotoroidic Materials -- 3.4.5 Other Forms of Primary Ferroic Order -- 3.4.6 Higher-Order Ferroics -- 3.4.6.1 Ferromagnetoelectrics and the Linear Magnetoelectric Effect -- 3.4.6.2 Tertiary and Higher-Order Ferroics -- 3.4.6.3 Ambiguity in the Classification of Ferroic States -- 3.4.7 Multiferroics -- 3.4.7.1 Terminology -- 3.4.7.2 Interest in Multiferroics -- 3.4.7.3 Multiferroics with Independent Magnetic and Electric Orders -- 3.4.7.4 Multiferroics with Coupled Magnetic and Electric Orders -- 3.4.7.5 Multiferroicity in Inhomogeneous Systems -- 3.4.7.6 Applications and Trends -- Chapter 4 Nonlinear Optics -- 4.1 Interaction of Materials with the Electromagnetic Radiation Field -- 4.1.1 Hamilton Operator -- 4.1.2 Multipole Expansion -- 4.1.2.1 Electric Dipole -- 4.1.2.2 Magnetic Dipole and Electric Quadrupole -- 4.2 Wave Equation in Nonlinear Optics -- 4.2.1 Derivation of the Wave Equation with an Extended Source Term -- 4.2.2 General Solution of the Wave Equation -- 4.2.3 Four Solutions of Particular Interest -- 4.3 Microscopic Sources of Nonlinear Optical Effects -- 4.4 Important Nonlinear Optical Processes
4.4.1 Two-Photon Sum Frequency Generation -- 4.4.2 Second Harmonic Generation -- 4.4.3 Two-Photon Difference Frequency Generation -- 4.4.4 Optical Parametric Generation -- 4.4.5 Third Harmonic Generation -- 4.5 Nonlinear Spectroscopy of Electronic States -- 4.5.1 Transition Matrix Elements -- 4.5.2 Resonance Behaviour at the Contributing Frequencies -- 4.5.3 Local-Field Corrections -- 4.5.4 Linear Optical Properties at the Contributing Frequencies -- 4.5.5 Phase Matching -- Chapter 5 Experimental Aspects -- 5.1 Laser Sources -- 5.1.1 Nanosecond Laser Systems with Optical Parametric Oscillator -- 5.1.2 Femtosecond Laser Systems with Optical Parametric Amplifier -- 5.2 Experimental Set-Ups -- 5.2.1 Spectral Resolution -- 5.2.1.1 Beam Path for Laser Spectroscopy -- 5.2.1.2 Polarisation-Dependent Measurements -- 5.2.1.3 Spectral Filtering -- 5.2.1.4 Signal Normalisation -- 5.2.2 Imaging by Projection -- 5.2.2.1 Image Resolution -- 5.2.2.2 Camera and Projection -- 5.2.2.3 Phase-Resolved Imaging -- 5.2.3 Imaging by Scanning -- 5.3 Temporal Resolution -- Chapter 6 Nonlinear Optics on Ferroics - An Instructive Example -- 6.1 SHG Contributions from Antiferromagnetic Cr2O3 -- 6.2 SHG Spectroscopy -- 6.3 Topography on Antiferromagnetic Domains -- 6.4 Magnetic Structure in the Spin-Flop Phase -- Part II Novel Functionalities -- Chapter 7 The Unique Degrees of Freedom of Optical Experiments -- 7.1 Polarisation-Dependent Spectroscopy -- 7.1.1 Basic Methodical Aspects -- 7.1.2 Resonance Enhancement of Signals -- 7.1.3 Sublattice Selectivity -- 7.1.4 Separation of Coexisting Types of Order -- 7.1.5 Spectral Identification of Symmetries -- 7.2 Spatial Resolution - Domains -- 7.2.1 Access to Hidden Domain States -- 7.2.1.1 Higher Selectivity -- 7.2.1.2 180∘ Domains -- 7.2.1.3 Translation Domains -- 7.2.1.4 Domains in Novel Types of Ferroics
7.2.2 Domain Microscopy at Different Resolution -- 7.2.2.1 Far-Field Microscopy -- 7.2.2.2 Near-Field Microscopy -- 7.2.3 Domain Topography Below the Optical Resolution Limit -- 7.2.3.1 SHG Contributions at Domain Walls -- 7.2.3.2 SHG Contributions of Sub-Resolution Domains -- 7.2.3.3 Experimental Factors -- 7.2.3.4 Statistical Factors -- 7.2.4 Domain Topography in Three Dimensions -- 7.2.4.1 Scanning Techniques: Phase-Matched Čerenkov SHG -- 7.2.4.2 Projection Techniques: Non-Phase-Matched Bulk SHG -- 7.3 Temporal Resolution - Correlation Dynamics -- 7.3.1 Overview -- 7.3.1.1 Terms and Definitions -- 7.3.1.2 Magnetisation Dynamics -- 7.3.1.3 Classical Macrospin Dynamics -- 7.3.1.4 Three-Temperature Model -- 7.3.1.5 Spins as Quantum-Mechanical Objects -- 7.3.1.6 Magnetisation Versus Magneto-Optics -- 7.3.2 Dynamical Properties of Ferromagnetic Systems -- 7.3.2.1 Magnetisation Dynamics of Metallic Ni by SHG -- 7.3.2.2 Magnetisation Dynamics of Semiconducting EuO by SHG -- 7.3.3 Dynamical Processes in Antiferromagnetic Systems -- 7.3.3.1 Difference in the Dynamics of Ferro- and Antiferromagnets -- 7.3.3.2 Ultrafast Antiferromagnetic Switching -- 7.3.3.3 Antiferromagnetic Switching in Multiferroics -- 7.3.4 Nonlinear Effects in the Few-Terahertz Range -- 7.3.4.1 Linear Terahertz Spectroscopy -- 7.3.4.2 Nonlinear Techniques at Terahertz Frequencies -- 7.3.4.3 Two-Dimensional Terahertz Time-Domain Spectroscopy -- Chapter 8 Theoretical Aspects -- 8.1 Microscopic Sources of SHG in Ferromagnetic Metals -- 8.2 Microscopic Sources of SHG in Antiferromagnetic Insulators -- 8.2.1 Chromium Sesquioxide -- 8.2.2 Hexagonal Manganites -- 8.2.3 Nickel Oxide -- Part III Materials and Applications -- Chapter 9 SHG and Multiferroics with Magnetoelectric Correlations -- 9.1 Type-I Multiferroics -- The Hexagonal Manganites -- 9.1.1 Synthesis and Crystal Structure
9.1.2 Lattice Trimerisation -- 9.1.2.1 The Ferroelectric P63cm Phase -- 9.1.2.2 Ferroelectric SHG Spectra -- 9.1.2.3 Domain States in the P63cm Phase -- 9.1.2.4 The Non-Ferroelectric P3‾c1 Phase -- 9.1.3 Antiferromagnetic Order of the Mn3+ Lattice -- 9.1.4 Magnetic Order of the Rare-Earth System -- 9.1.5 Magnetic Sublattice Interactions -- 9.1.6 Magnetoelectric Sublattice Interactions -- 9.1.6.1 Optical Magnetoelectric Coupling -- 9.1.6.2 Coupling Between Ferroelectric and Antiferromagnetic Domains -- 9.1.6.3 Magnetoelectric Coupling in External Fields -- 9.1.7 Dynamic Correlations -- 9.2 Type-I Multiferroics -- BiFeO3 -- 9.2.1 Synthesis and Crystal Structure -- 9.2.2 Ferroelectric Order -- 9.2.3 Antiferromagnetic Order -- 9.2.4 Magnetoelectric Coupling Effects -- 9.3 Type-I Multiferroics with Strain-Induced Ferroelectricity -- 9.4 Type-II Multiferroics -- MnWO4 -- 9.4.1 Synthesis and Crystal Structure -- 9.4.2 Multiferroic Order -- 9.4.3 SHG Contributions -- Incommensurate SHG -- 9.4.4 Types of Domains -- 9.4.5 Poling Dynamics -- 9.4.6 Multiferroic Domain Walls -- 9.5 Type-II Multiferroics -- TbMn2O5 -- 9.5.1 Synthesis, Crystal Structure, and Magnetic Order -- 9.5.2 Decomposition of Contributions to the Spontaneous Polarisation -- 9.6 Type-II Multiferroics -- TbMnO3 -- 9.6.1 Synthesis, Crystal Structure, and Magnetic Order -- 9.6.2 Domains and Poling -- 9.6.3 Optical Domain Switching -- 9.6.4 Robustness of the Multiferroic State -- 9.7 Type-II Multiferroics with Higher-Order Domain Functionalities -- 9.7.1 Magnetoelectric Inversion of a Domain Pattern -- 9.7.2 Magnetoelectric 'Teleportation' of a Domain Pattern -- Chapter 10 SHG and Materials with Novel Types of Primary Ferroic Orders -- 10.1 Ferrotoroidics -- 10.1.1 Ferrotoroidic LiCoPO4 -- 10.1.1.1 Crystal Structure and Magneto-Toroidal Order -- 10.1.1.2 Observation of Ferrotoroidic Domains
Summary Nonlinear Optics on Ferroic Materials Covering the fruitful combination of nonlinear optics and ferroic materials! The use of nonlinear optics for the study of ferroics, that is, magnetically, electrically or otherwise spontaneously ordered and switchable materials has witnessed a remarkable development since its inception with the invention of the laser in the 1960s. This book on Nonlinear Optics on Ferroic Materials reviews and advances an overarching concept of ferroic order and its exploration by nonlinear-optical methods. In doing so, it brings together three fields of physics: symmetry, ferroic order, and nonlinear laser spectroscopy. It begins by introducing the fundamentals for each of these fields. The book then discusses how nonlinear optical studies help to reveal properties of ferroic materials that are often inaccessible with other methods. In this, consequent use is made of the unique degrees of freedom inherent to optical experiments. An excursion into the theoretical foundations of nonlinear optical processes in ferroics rounds off the discussion. The final part of the book explores classes of ferroic materials of primary interest. In particular, this covers multiferroics with magnetoelectric correlations and oxide-electronic heterostructures. An outlook towards materials exhibiting novel forms of ferroic states or correlated arrangements beyond ferroic order and the study these systems by nonlinear optics concludes the work. The book is aimed equally at experienced scientists and young researchers at the interface between condensed-matter physics and optics and with a taste for bold, innovative ideas
Notes 10.1.1.3 Poling in a Toroidal Field
Description based on publisher supplied metadata and other sources
Subject Nonlinear optics. Generated by AI
Symmetry (Physics) Generated by AI
Form Electronic book
ISBN 9783527822799
3527822798
9783527822805
3527822801