Description |
1 online resource (402 p.) |
Series |
IEEE Press Series on Biomedical Engineering Series |
|
IEEE Press Series on Biomedical Engineering Series
|
Contents |
Cover -- Title Page -- Copyright Page -- Contents -- Author Biographies -- Preface -- List of Abbreviations -- List of Terms -- Chapter 1 Systems Biology and Multiscale Modeling -- 1.1 Introduction -- 1.2 Systems Biology -- 1.3 Systems Biology Modeling Goals -- 1.4 Systems Biology Modeling Approach -- 1.5 Application of Multiscale Methods in Systems Biology -- 1.5.1 Introduction -- 1.6 The Use of Systems Biology and Multiscale Modeling in Biomedical and Medical Science -- 1.7 Application of Computational Methods in Biomedical Engineering -- 1.7.1 Fundamental Principles |
|
1.7.2 Finite Element Method -- 1.7.3 Boundary Element Method -- 1.7.4 Finite Differences Method -- 1.8 Challenges -- References -- Chapter 2 Biomedical Imaging -- 2.1 Introduction -- 2.2 X-ray Radiography -- 2.2.1 X-ray Interaction with Tissues -- 2.2.2 Medical Applications of X-rays -- 2.3 Computed Tomography -- 2.3.1 The Principle of CT Imaging -- 2.3.2 The Evolution of CT Scanners -- 2.3.3 Medical Applications of CT Imaging -- 2.3.3.1 Application of CT Imaging in Cancer -- 2.3.3.2 Application of CT Imaging in Lungs -- 2.3.3.3 Application of CT Imaging in Cardiovascular Disease |
|
2.3.3.4 Application of CT Imaging in Other Fields -- 2.3.4 Radiation of CT Imaging -- 2.4 Diagnostic Ultrasound -- 2.4.1 The Principle of US -- 2.4.2 Medical Applications of US -- 2.5 Magnetic Resonance Imaging -- 2.5.1 MRI Principle -- 2.5.2 Medical Applications of MRI -- 2.6 Positron Emission Tomography (PET) -- 2.6.1 The Principle of PET -- 2.6.2 Medical Applications of PET -- 2.7 Single Photon Emission Computed Tomography -- 2.7.1 The Principle of SPECT -- 2.7.2 Medical Applications of SPECT -- 2.8 Endoscopy -- 2.8.1 Medical Applications of Endoscopy -- 2.9 Elastography |
|
2.9.1 Elastographic Techniques -- 2.9.2 Elastographic Medical Applications -- 2.10 Conclusions and Future Trends -- References -- Chapter 3 Computational Modeling at Molecular Level -- 3.1 Introduction -- 3.2 Introduction to Molecular Mechanics -- 3.2.1 Chemical Formulas -- 3.2.2 Molecular Structure and Polarity -- 3.2.2.1 Mathematical Modeling of Polarizing Biochemical Systems -- 3.3 Molecular Bioengineering in Areas Critical to Human Health -- 3.3.1 Cell Biology -- 3.3.1.1 Biology of Growth Factor Systems -- 3.3.2 Diagnostic Medicine -- 3.3.2.1 Lab-on-a-Chip Devices -- 3.3.2.2 Biosensors |
|
3.3.3 Preventive Medicine -- 3.3.4 Therapeutic Medicine -- 3.3.4.1 Drug Delivery -- 3.3.4.2 Tissue Engineering -- References -- Chapter 4 Computational Modeling at Cell Level -- 4.1 Introduction -- 4.2 Introduction to Cell Mechanics -- 4.2.1 Cell Material Properties -- 4.2.2 Cell Composition and Structure -- 4.3 Cellular Bioengineering in Areas Critical to Human Health -- 4.3.1 Biology -- 4.3.2 Diagnostic Medicine -- 4.3.2.1 Organ Chip Technology -- 4.3.2.2 Mechanosensors -- 4.3.3 Therapeutic Medicine -- 4.3.3.1 Drug Delivery -- 4.3.3.2 Tissue Engineering -- 4.3.4 P4 Medicine -- References |
Summary |
"The book begins with a description of the relationship between multiscale modeling and systems biology before moving on to proceed systematically upwards in hierarchical levels from the molecular to the cellular, tissue, and organ level. It then examines multiscale modeling applications in specific functional areas, like mechanotransduction, musculoskeletal, and cardiovascular systems." |
Notes |
Description based upon print version of record |
|
Chapter 5 Computational Modeling at Tissue Level |
Subject |
Biomedical engineering -- Mathematical models
|
|
Biomedical engineering -- Computer simulation
|
|
Biomedical engineering -- Mathematics
|
Form |
Electronic book
|
Author |
Potsika, Vassiliki T
|
|
Fotiadis, Dimitrios I
|
ISBN |
9781119517306 |
|
1119517303 |
|