Limit search to available items
Book Cover
E-book
Author Goerss, Paul Gregory

Title Simplicial homotopy theory / Paul G. Goerss, John F. Jardine
Published Basel ; Boston : Birkhäuser, ©1999

Copies

Description 1 online resource (xv, 510 pages)
Series Progress in mathematics ; v. 174
Progress in mathematics (Boston, Mass.) ; v. 174.
Contents I Simplicial sets -- 1. Basic definitions -- 2. Realization -- 3. Kan complexes -- 4. Anodyne extensions -- 5. Function complexes -- 6. Simplicial homotopy -- 7. Simplicial homotopy groups -- 8. Fundamental groupoid -- 9. Categories of fibrant objects -- 10. Minimal fibrations -- 11. The closed model structure -- II Model Categories -- 1. Homotopical algebra -- 2. Simplicial categories -- 3. Simplicial model categories -- 4. The existence of simplicial model category structures -- 5. Examples of simplicial model categories -- 6. A generalization of Theorem 4.1 -- 7. Quillen's total derived functor theorem -- 8. Homotopy cartesian diagrams -- III Classical results and constructions -- 1. The fundamental groupoid, revisited -- 2. Simplicial abelian groups -- 3. The Hurewicz map -- 4. The Ex? functor -- 5. The Kan suspension -- IV Bisimplicial sets -- 1. Bisimplicial sets: first properties -- 2. Bisimplicial abelian groups -- 3. Closed model structures for bisimplicial sets -- 4. The Bousfield-Friedlander theorem -- 5. Theorem B and group completion -- V Simplicial groups -- 1. Skeleta -- 2. Principal fibrations I: simplicial G-spaces -- 3. Principal fibrations II: classifications -- 4. Universal cocycles and $$ \bar W $$G -- 5. The loop group construction -- 6. Reduced simplicial sets, Milnor's FK-construction -- 7. Simplicial groupoids -- VI The homotopy theory of towers -- 1. A model category structure for towers of spaces -- 2. The spectral sequence of a tower of fibrations -- 3. Postnikov towers -- 4. Local coefficients and equivariant cohomology -- 5. On k-invariants -- 6. Nilpotent spaces -- VII Reedy model categories -- 1. Decomposition of simplicial objects -- 2. Reedy model category structures -- 3. Geometric realization -- 4. Cosimplicial spaces -- VIII Cosimplicial spaces: applications -- 1. The homotopy spectral sequence of a cosimplicial space -- 2. Homotopy inverse limits -- 3. Completions -- 4. Obstruction theory -- IX Simplicial functors and homotopy coherence -- 1. Simplicial functors -- 2. The Dwyer-Kan theorem -- 3. Homotopy coherence -- 4. Realization theorems -- X Localization -- 1. Localization with respect to a map -- 2. The closed model category structure -- 3. Bousfield localization -- 4. A model for the stable homotopy category -- References
Summary Since the beginning of the modern era of algebraic topology, simplicial methods have been used systematically and effectively for both computation and basic theory. With the development of Quillen's concept of a closed model category and, in particular, a simplicial model category, this collection of methods has become the primary way to describe non-abelian homological algebra and to address homotopy-theoretical issues in a variety of fields, including algebraic K-theory. This book supplies a modern exposition of these ideas, emphasizing model category theoretical techniques. Discussed here are the homotopy theory of simplicial sets, and other basic topics such as simplicial groups, Postnikov towers, and bisimplicial sets. The more advanced material includes homotopy limits and colimits, localization with respect to a map and with respect to a homology theory, cosimplicial spaces, and homotopy coherence. Interspersed throughout are many results and ideas well-known to experts, but uncollected in the literature. Intended for second-year graduate students and beyond, this book introduces many of the basic tools of modern homotopy theory. An extensive background in topology is not assumed
Bibliography Includes bibliographical references (pages 503-506) and index
Notes English
Print version record
Subject Homotopy theory.
Homotopy theory.
Homotopía
Homotopy theory
Form Electronic book
Author Jardine, J. F., 1951-
ISBN 3034601891
9783034601894
9783034887076
3034887078
9783034897372
3034897375