Limit search to available items
Book Cover
E-book

Title Axon growth and regeneration : methods and protocols / edited by Andrew J. Murray
Published New York, NY : Humana Press, 2014

Copies

Description 1 online resource (xi, 253 pages) : illustrations (some color)
Series Methods in Molecular Biology, 1064-3745 ; 1162
Methods in molecular biology (Clifton, N.J.) ; v. 1162. 1064-3745
Contents Axon Regeneration: What Needs to Be Overcome? -- Analysis of Calcium Signals in Steering Neuronal Growth Cones In Vitro -- The Use of Fluorescence Resonance Energy Transfer (FRET) to Measure Axon Growth and Guidance Related Intracellular Signaling in Live Dorsal Root Ganglia Neuronal Growth Cones -- Neurite Outgrowth and Growth Cone Collapse Assays to Assess Neuronal Responses to Extracellular Cues -- Quantitative Assessment of Neurite Outgrowth in Mouse Retinal Explants -- Growth Cone Collapse Assay -- Axon Length Quantification Microfluidic Culture Platform for Growth and Regeneration Study -- Organotypic Slice Co-Culture Systems to Study Axon Regeneration in the Dopaminergic System Ex Vivo -- Monitoring Neuron and Astrocyte Interactions with a 3D Cell Culture System -- Targeting Inhibitory Chondroitin Sulphate Proteoglycans to Promote Plasticity After Injury -- Polymeric Biomaterials for Nerve Regeneration: Fabrication and Implantation of a Biodegradable Nerve Guide -- A Highly Reproducible Mouse Model of Compression Spinal Cord Injury -- Using Templated Agarose Scaffolds to Promote Axon Regeneration Through Sites of Spinal Cord Injury -- In Vivo Electroporation of Adult Mouse Sensory Neurons for Studying Peripheral Axon Regeneration -- Assessing Motor Outcome and Functional Recovery Following Nerve Injury -- The Use of an Adeno-Associated Viral Vector for Efficient Bicistronic Expression of Two Genes in the Central Nervous System -- Application of Tissue Clearing and Light Sheet Fluorescence Microscopy to Assess Optic Nerve Regeneration in Unsectioned Tissues -- Time-Lapse In Vivo Imaging of Dorsal Root Nerve Regeneration in Mice -- Using Manganese-Enhanced MRI to Assess Optic Nerve Regeneration
Summary Axon Growth and Regeneration: Methods and Protocols brings together a diverse set of techniques for the study of the mechanisms underlying central nervous system axon growth, consequently providing a resource that will aid in the development of repair strategies. After an introductory section, this detailed volume continues with sections focusing on axon growth in vitro, providing a range of protocols that can be used to examine intracellular signalling pathways, axonal responses to extracellular factors, and methods for quantifying outgrowth
The next section provides protocols for inducing experimental injury in vivo as well as some highly promising protocols for promoting regeneration, which segues into the final section highlighting a series of protocols that can be used to monitor the extent of axon regeneration in vivo, ranging from tract tracing to in vivo imaging and functional recovery
As a book in the Methods in Molecular Biology series, chapters contain introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls
Practical and reliable, Axon Growth and Regeneration: Methods and Protocols aims to serve researchers studying axon regeneration with a significant set of diverse tools, vital for moving on to the next generation of exciting new discoveries in the field
Analysis biomedische wetenschappen
biomedicine
neurowetenschap
neuroscience
neurobiologie
neurobiology
Medicine (General)
Geneeskunde (algemeen)
Notes Includes index
Bibliography Includes bibliographical references and index
Notes Online resource; title from PDF title page (SpringerLink, viewed June 6, 2014)
Subject Axons -- Regeneration -- Laboratory manuals
Axons -- Growth -- Laboratory manuals
Axons -- physiology
Axons -- Growth
Genre/Form Laboratory manuals
Laboratory manuals.
Manuels de laboratoire.
Form Electronic book
Author Murray, Andrew J., editor
ISBN 9781493907779
1493907778
149390776X
9781493907762