Limit search to available items
Record 49 of 134
Previous Record Next Record
Book Cover
E-book
Author Blazek, Jiri, author.

Title Computational fluid dynamics : principles and applications / Jiri Blazek, PhD
Edition Third edition
Published Amsterdam ; San Diego : Butterworth Heinemann, [2015]
©2015

Copies

Description 1 online resource
Contents Front Cover; Computational Fluid Dynamics: Principles and Applications; Copyright; Contents; Acknowledgments; List of Symbols; Abbreviations; Chapter 1: Introduction; Chapter 2: Governing Equations; 2.1 The Flow and Its Mathematical Description; 2.1.1 Finite control volume; 2.2 Conservation Laws; 2.2.1 The continuity equation; 2.2.2 The momentum equation; 2.2.3 The energy equation; 2.3 Viscous Stresses; 2.4 Complete System of the Navier-Stokes Equations; 2.4.1 Formulation for a perfect gas; 2.4.2 Formulation for a real gas; 2.4.3 Simplifications to the Navier-Stokes equations
Thin shear layer approximationParabolized Navier-Stokes equations; Euler equations; References; Chapter 3: Principles of Solution of the Governing Equations; 3.1 Spatial Discretization; 3.1.1 Finite-difference method; 3.1.2 Finite-volume method; 3.1.3 Finite-element method; 3.1.4 Other discretization methods; Spectral-element method; Lattice Boltzmann method; Gridless method; 3.1.5 Central and upwind schemes; Central schemes; Upwind schemes; Flux-vector splitting schemes; Flux-difference splitting schemes; TVD Schemes; Fluctuation-splitting schemes; Solution reconstruction
First- and second-order schemesENO/WENO Schemes; Central versus upwind schemes; Upwind schemes for real gas flows; 3.2 Temporal Discretization; 3.2.1 Explicit schemes; 3.2.2 Implicit schemes; 3.3 Turbulence Modeling; 3.4 Initial and Boundary Conditions; References; Chapter 4: Structured Finite-Volume Schemes; 4.1 Geometrical Quantities of a Control Volume; 4.1.1 Two-dimensional case; 4.1.2 Three-dimensional case; 4.2 General Discretization Methodologies; 4.2.1 Cell-centered scheme; 4.2.2 Cell-vertex scheme: overlapping control volumes; 4.2.3 Cell-vertex scheme: dual control volumes
4.2.4 Cell-centered versus cell-vertex schemes4.3 Discretization of the Convective Fluxes; 4.3.1 Central scheme with artificial dissipation; Scalar dissipation scheme; Matrix dissipation scheme; 4.3.2 Flux-vector splitting schemes; Van Leer's scheme; AUSM; CUSP scheme; 4.3.3 Flux-difference splitting schemes; Roe upwind scheme; 4.3.4 Total variation diminishing schemes; Upwind TVD scheme; 4.3.5 Limiter functions; Limiter functions for MUSCL interpolation; MUSCL scheme with =0; MUSCL scheme with =1/3; Limiter for CUSP scheme; Limiter for TVD scheme; 4.4 Discretization of the Viscous Fluxes
4.4.1 Cell-centered scheme4.4.2 Cell-vertex scheme; References; Chapter 5: Unstructured Finite-Volume Schemes; 5.1 Geometrical Quantities of a Control Volume; 5.1.1 Two-dimensional case; Triangular element; Quadrilateral element; Element center; 5.1.2 Three-dimensional case; Triangular face; Quadrilateral face; Volume; Cell centroid; 5.2 General Discretization Methodologies; 5.2.1 Cell-centered scheme; 5.2.2 Median-dual cell-vertex scheme; 5.2.3 Cell-centered versus median-dual scheme; Accuracy; Computational work; Memory requirements; Grid generation/adaptation
Summary Computational Fluid Dynamics: Principles and Applications, Third Edition presents students, engineers, and scientists with all they need to gain a solid understanding of the numerical methods and principles underlying modern computation techniques in fluid dynamics. By providing complete coverage of the essential knowledge required in order to write codes or understand commercial codes, the book gives the reader an overview of fundamentals and solution strategies in the early chapters before moving on to cover the details of different solution techniques. This updated edition includes new
Bibliography Includes bibliographical references and index
Notes Online resource; title from PDF title page (EBSCO, viewed May 5, 2015)
Subject Computational fluid dynamics.
Fluid dynamics -- Mathematical models
TECHNOLOGY & ENGINEERING -- Hydraulics.
Computational fluid dynamics
Fluid dynamics -- Mathematical models
Form Electronic book
ISBN 9780128011720
0128011726