Limit search to available items
Book Cover
E-book
Author Dulhare, Uma N., author

Title Machine Learning and Big Data Concepts, Algorithms, Tools and Applications / Uma N. Dulhare, Khaleel Ahmad, Khairol Amali Bin Ahmad
Published Hoboken : John Wiley & Sons, Inc., 2020

Copies

Description 1 online resource
Contents Cover -- Title Page -- Copyright Page -- Contents -- Preface -- Section 1: Theoretical Fundamentals -- Chapter 1 Mathematical Foundation -- 1.1 Concept of Linear Algebra -- 1.1.1 Introduction -- 1.1.2 Vector Spaces -- 1.1.3 Linear Combination -- 1.1.4 Linearly Dependent and Independent Vectors -- 1.1.5 Linear Span, Basis and Subspace -- 1.1.6 Linear Transformation (or Linear Map) -- 1.1.7 Matrix Representation of Linear Transformation -- 1.1.7.1 Transformation Matrix -- 1.1.8 Range and Null Space of Linear Transformation -- 1.1.9 Invertible Linear Transformation
1.2 Eigenvalues, Eigenvectors, and Eigendecomposition of a Matrix -- 1.2.1 Characteristics Polynomial -- 1.2.1.1 Some Results on Eigenvalue -- 1.2.2 Eigendecomposition [11] -- 1.3 Introduction to Calculus -- 1.3.1 Function -- 1.3.2 Limits of Functions -- 1.3.2.1 Some Properties of Limits -- 1.3.2.2 1nfinite Limits -- 1.3.2.3 Limits at Infinity -- 1.3.3 Continuous Functions and Discontinuous Functions -- 1.3.3.1 Discontinuous Functions -- 1.3.3.2 Properties of Continuous Function -- 1.3.4 Differentiation -- References -- Chapter 2 Theory of Probability -- 2.1 Introduction -- 2.1.1 Definition
2.1.1.1 Statistical Definition of Probability -- 2.1.1.2 Mathematical Definition of Probability -- 2.1.2 Some Basic Terms of Probability -- 2.1.2.1 Trial and Event -- 2.1.2.2 Exhaustive Events (Exhaustive Cases) -- 2.1.2.3 Mutually Exclusive Events -- 2.1.2.4 Equally Likely Events -- 2.1.2.5 Certain Event or Sure Event -- 2.1.2.6 Impossible Event or Null Event (.) -- 2.1.2.7 Sample Space -- 2.1.2.8 Permutation and Combination -- 2.1.2.9 Examples -- 2.2 Independence in Probability -- 2.2.1 Independent Events -- 2.2.2 Examples: Solve the Following Problems -- 2.3 Conditional Probability
2.3.1 Definition -- 2.3.2 Mutually Independent Events -- 2.3.3 Examples -- 2.4 Cumulative Distribution Function -- 2.4.1 Properties -- 2.4.2 Example -- 2.5 Baye's Theorem -- 2.5.1 Theorem -- 2.5.1.1 Examples -- 2.6 Multivariate Gaussian Function -- 2.6.1 Definition -- 2.6.1.1 Univariate Gaussian (i.e., One Variable Gaussian) -- 2.6.1.2 Degenerate Univariate Gaussian -- 2.6.1.3 Multivariate Gaussian -- References -- Chapter 3 Correlation and Regression -- 3.1 Introduction -- 3.2 Correlation -- 3.2.1 Positive Correlation and Negative Correlation -- 3.2.2 Simple Correlation and Multiple Correlation
3.2.3 Partial Correlation and Total Correlation -- 3.2.4 Correlation Coefficient -- 3.3 Regression -- 3.3.1 Linear Regression -- 3.3.2 Logistic Regression -- 3.3.3 Polynomial Regression -- 3.3.4 Stepwise Regression -- 3.3.5 Ridge Regression -- 3.3.6 Lasso Regression -- 3.3.7 Elastic Net Regression -- 3.4 Conclusion -- References -- Section 2: Big Data and Pattern Recognition -- Chapter 4 Data Preprocess -- 4.1 Introduction -- 4.1.1 Need of Data Preprocessing -- 4.1.2 Main Tasks in Data Preprocessing -- 4.2 Data Cleaning -- 4.2.1 Missing Data -- 4.2.2 Noisy Data -- 4.3 Data Integration
Summary Including hands-on tools and numerous case studies, this book aims to provide awareness of algorithms used for machine learning and big data in the academic and professional community. -- Edited summary from book
Subject Big data.
Disk access (Computer science)
Big data
Disk access (Computer science)
Form Electronic book
Author Ahmad, Khaleel, author
Bin Ahmad, Khairol Amali, author
ISBN 9781119654810
1119654815
1119654793
9781119654797
1523136960
9781523136964
1119654831
9781119654834