Limit search to available items
Book Cover
E-book

Title Earthquake thermodynamics and phase transformations in the earth's interior / edited by Roman Teisseyre, Eugeniusz Majewski
Published San Diego, Calif. : Academic Press, ©2001

Copies

Description 1 online resource (xxii, 674 pages) : illustrations
Series International geophysics series ; v. 76
International geophysics series ; v. 76.
Contents Front Cover; Earthquake Thermodynamics and Phase Transformations in the Earth's Interior; Copyright Page; Contents; Contributors; Preface; Introduction; PART I: THERMODYNAMICS AND PHASE TRANSFORMATIONS IN THE EARTH'S INTERIOR; Chapter 1. The Composition of the Earth; 1.1 Structure of the Earth; 1.2 Chemical Constraints; 1.3 Early Evolution of the Earth; References; Chapter 2. Thermodynamics of Chaos and Fractals Applied: Evolution of the Earth and Phase Transformations; 2.1 Evolution of the Universe; 2.2 Evolution of the Earth; 2.3 Evolution Equations and Nonlinear Mappings
2.4 Strange Attractors2.5 Examples of Maps; 2.6 Concept of Temperature in Chaos Theory; 2.7 Static and Dynamic States; 2.8 Measures of Entropy and Information; 2.9 The Lyapounov Exponents; 2.10 Entropy Production; 2.11 Entropy Budget of the Earth; 2.12 The Evolution Criterion; 2.13 The Driving Force of Evolution; 2.14 Self-Organization Processes in Galaxies; 2.15 Fractals; 2.16 Thermodynamics of Multifractals; 2.17 The Fractal Properties of Elastic Waves; 2.18 Random Walk of Dislocations; 2.19 Chaos in Phase Transformations; 2.20 Conclusions; References
Chapter 3. Nonequilibrium Thermodynamics of Nonhydrostatically Stressed Solids3.1 Introduction; 3.2 Review of Hydrostatic Thermodynamics; 3.3 Conservation Equations; 3.4 Constitutive Assumptions; 3.5 Chemical Potential in Stress Fields; 3.6 Driving Force of Diffusion and Phase Transition; 3.7 Phase Equilibria under Stress; 3.8 Flow Laws of Diffusional Creeps; 3.9 Summary; References; Chapter 4. Experiments on Soret Diffusion Applied to Core Dynamics; 4.1 Review of Experiments Simulating the Core-Mantle Interactions; 4.2 Experiments on Soret Diffusion
4.3 Thermodynamic Modeling of the Core-Mantle Interactions4.4 Concluding Discussion; References; PART II: STRESS EVOLUTION AND THEORY OF CONTINUOUS DISTRIBUTION OF SELF-DEFORMATION NUCLEI; Chapter 5. Deformation Dynamics: Continuum with Self-Deformation Nuclei; 5.1 Self-Strain Nuclei and Compatibility Conditions; 5.2 Deformation Measures; 5.3 Thermal Nuclei; 5.4 Thermal Nuclei and Dislocations in 2D; 5.5 Defect Densities and Sources of Incompatibility; 5.6 Geometrical Objects; 5.7 Constitutive Relations; 5.8 Constitutive Laws for Bodies with the Electric-Stress Nuclei; References
Chapter 6. Evolution, Propagation, and Diffusion of Dislocation Fields6.1 Dislocation Density Flow; 6.2 Dislocation-Stress Relations; 6.3 Propagation and Flow Equations for the Dislocation-Related Stress Field; 6.4 Splitting the Stress Motion Equation into Seismic Wave and Fault-Related Fields; 6.5 Evolution of Dislocation Fields: Problem of Earthquake Prediction; References; Chapter 7. Statistical Theory of Dislocations; 7.1 Introduction; 7.2 Dynamics and Statistics of Discrete Defects; 7.3 The Field Equations; 7.4 Field Equations of Interacting Continua
Summary A group of distinguished scientists contributes to the foundations of a new discipline in Earth sciences: earthquake thermodynamics and thermodynamics of formation of the Earth's interior structures. The predictive powers of thermodynamics are so great that those aspiring to model earthquake and the Earth's interior will certainly wish to be able to use the theory. Thermodynamics is our only method of understanding and predicting the behavior of many environmental, atmospheric, and geological processes. The need for Earth scientists to develop a functional knowledge of thermodynamic concepts and methodology is therefore urgent. Sources of an entropy increase the dissipative and self-organizing systems driving the evolution and dynamics of the Universe and Earth through irreversible processes. The non-linear interactions lead to the formation of fractal structures. From the structural phase transformations the important interior boundaries emerge. Non-linear interactions between the defects in solids lead the authors to develop the physics of continua with a dense distribution of defects. Disclinations and dislocations interact during a slow evolution as well as during rapid dynamic events, like earthquakes. Splitting the dynamic processes into the 2D fault done and 3D surrounding space brings a new tool for describing the slip nucleation and propagation along the earthquake faults. Seismic efficiency, rupture velocity, and complexity of seismic source zone are considered from different points of view, fracture band earthquake model is developed on the basis of thermodynamics of line defects, like dislocations. Earthquake thermodynamics offers us a microscopic model of earthquake sources. Physics of defects helps the authors decscribe and explain a number of precursory phenomena caused by the buildup of stresses. Anomalies in electric polarization and electromagnetic radiation prior to earthquakes are considered from this point of view. Through the thermodynamic approach, the authors arrive at the fascinating question of posssibility of earthquake prediction. In general, the Earth is considered here as a multicomponent system. Transport phenomena as well as wave propagation and shock waves are considered in this system subjected also to chemical and phase transformations
Bibliography Includes bibliographical references and index
Notes Master and use copy. Digital master created according to Benchmark for Faithful Digital Reproductions of Monographs and Serials, Version 1. Digital Library Federation, December 2002. http://purl.oclc.org/DLF/benchrepro0212 MiAaHDL
Print version record
digitized 2010 HathiTrust Digital Library committed to preserve pda MiAaHDL
Subject Geodynamics.
Thermodynamics.
Thermodynamics
thermodynamics.
NATURE -- Earthquakes & Volcanoes.
SCIENCE -- Earth Sciences -- Geography.
SCIENCE -- Earth Sciences -- Seismology & Volcanism.
SCIENCE -- Earth Sciences -- Geology.
Geodynamics
Thermodynamics
Erdinneres
Thermodynamik
Phasenumwandlung
Geodinâmica.
Termodinâmica.
Géodynamique.
Thermodynamique.
Sismologie.
Séismes.
Flux géothermique.
SUBJECT Earth (Planet) -- Interior
Subject Earth (Planet)
Form Electronic book
Author Teisseyre, R. (Roman), 1929-
Majewski, Eugeniusz.
ISBN 9780080530659
0080530656
1281033693
9781281033697