Description |
1 online resource (xiii, 182 pages) : illustrations |
Series |
Springer theses : recognizing outstanding Ph. D. research, 2190-5053 |
|
Springer theses.
|
Contents |
pt. 1. Introduction and motivation -- pt. 2. Theoretical concepts -- pt. 3. Results and discussion |
Summary |
The field of molecular electronics and organic photovoltaics is steadily growing. One of the major themes in molecular electronics is the construction, measurement, and understanding of the current-voltage response of an electronic circuit, in which molecules may act as conducting elements. The investigated molecular structures in this thesis have been shown to be suitable for distance-independent charge transport. More precisely, the systems investigated were of particular interest due to their ability to provide efficient electronic coupling between electroactive units, and display wire-like behavior in terms of transferring charges from donors to acceptors. Besides impacting on the field of molecular electronics, the results of this research also has applications in the design and development of light harvesting, photoconversion and catalytic modules. This work is a great asset to the field of charge transport through organic pi-conjugated molecules |
Bibliography |
Includes bibliographical references |
Notes |
English |
|
Print version record |
Subject |
Nanowires -- Testing
|
|
Energy transfer -- Testing
|
|
TECHNOLOGY & ENGINEERING -- Electronics -- Digital.
|
|
TECHNOLOGY & ENGINEERING -- Electronics -- Microelectronics.
|
|
Chimie.
|
|
Science des matériaux.
|
|
Chemistry.
|
|
Chemistry, Physical and theoretical.
|
|
Electric power production.
|
|
Physics.
|
Form |
Electronic book
|
ISBN |
9783642147401 |
|
3642147402 |
|
3642147399 |
|
9783642147395 |
|
1283001993 |
|
9781283001991 |
|
9786613001993 |
|
6613001996 |
|