Title Page; Copyright Page; Contents; About the Author; Preface; Acknowledgments; Nomenclature; Chapter 1 Introduction; 1.1 Overview of Heterojunction Bipolar Transistors; 1.2 Modeling and Measurement for HBT; 1.3 Organization of This Book; References; Chapter 2 Basic Concept of Microwave Device Modeling; 2.1 Signal Parameters; 2.1.1 Low-Frequency Parameters; 2.1.2 S-Parameters; 2.2 Representation of Noisy Two-Port Network; 2.2.1 Noise Matrix; 2.2.2 Noise Parameters; 2.3 Basic Circuit Elements; 2.3.1 Resistance; 2.3.2 Capacitance; 2.3.3 Inductance; 2.3.4 Controlled Sources
3.2.2 Equivalent Circuit Model3.2.3 Determination of Model Parameters; 3.3 BJT Physical Operation; 3.3.1 Device Structure; 3.3.2 The Modes of Operation; 3.3.3 Base-Width Modulation; 3.3.4 High Injection and Current Crowding; 3.4 Equivalent Circuit Model; 3.4.1 E-M Model; 3.4.2 G-P Model; 3.4.3 Noise Model; 3.5 Microwave Performance; 3.5.1 Transition Frequency; 3.5.2 Common-Emitter Configuration; 3.5.3 Common-Base Configuration; 3.5.4 Common-Collector Configuration; 3.5.5 Summary and Comparisons; 3.6 Summary; References; Chapter 4 Basic Principle of HBT; 4.1 Semiconductor Heterojunction
5.5.1 Z Parameter Method5.5.2 Cold-HBT Method; 5.5.3 Open-Collector Method; 5.6 Extraction Method of Intrinsic Resistance; 5.6.1 Direct Extraction Method; 5.6.2 Hybrid Method; 5.7 Semianalysis Method; 5.8 Summary; References; Chapter 6 Large-Signal Equivalent Circuit Modeling of HBT; 6.1 Linear and Nonlinear; 6.1.1 Definition; 6.1.2 Nonlinear Lumped Elements; 6.2 Large Signal and Small Signal; 6.3 Thermal Resistance; 6.3.1 Definition; 6.3.2 Equivalent Circuit Model; 6.3.3 Determination of Thermal Resistance; 6.4 Nonlinear HBT Modeling; 6.4.1 VBIC Model; 6.4.2 Agilent Model
Summary
A highly comprehensive summary on circuit related modeling techniques and parameter extraction methods for heterojunction bipolar transistors Heterojunction Bipolar Transistor (HBT) is one of the most important devices for microwave applications. The book details the accurate device modeling for HBTs and high level IC design using HBTs Provides a valuable reference to basic modeling issues and specific semiconductor device models encountered in circuit simulators, with a thorough reference list at the end of each chapter for onward learning Offers an overview on modeling techniques and paramet
Bibliography
Includes bibliographical references and index
Notes
Print version record and CIP data provided by publisher