Description |
1 online resource (iv, 286 pages) : illustrations |
Series |
Memoirs of the American Mathematical Society, 1947-6221 ; v. 365 |
|
Memoirs of the American Mathematical Society ; no. 365. 0065-9266
|
Contents |
0. Introduction 1. Preliminary lemmas 2. $Q$-levels and commutator spaces 3. Embeddings of parabolic subgroups 4. The maximal rank theorem 5. The classical module theorem 6. Modules with 1-dimensional weight spaces 7. The rank 1 theorem 8. Natural embeddings of classical groups 9. Component restrictions 10. $V 11. $X = A_n$ 12. $X = B_n$, $C_n$, $D_n$, $n \neq 2$ 13. $X = B_2$, $C_2$, and $G_2$ 14. $X = F_4$ ($p>2$), $E_6$, $E_7$, $E_8$ 15. Exceptional cases for $p = 2$ or $3$ 16. Embeddings and prime restrictions 17. The main theorems |
Notes |
"May 1987, vol. 67, no. 365 (first of 3 numbers)." |
Bibliography |
Includes bibliographical references (pages 285-286) |
Notes |
Print version record |
Subject |
Maximal subgroups.
|
|
Linear algebraic groups.
|
|
Representations of groups.
|
|
MATHEMATICS -- Essays.
|
|
MATHEMATICS -- Pre-Calculus.
|
|
MATHEMATICS -- Reference.
|
|
Linear algebraic groups
|
|
Maximal subgroups
|
|
Representations of groups
|
Form |
Electronic book
|
ISBN |
9781470407810 |
|
1470407817 |
|