Limit search to available items
Book Cover
E-book
Author Vorst, A. vander (André), 1935-

Title RF/microwave interaction with biological tissues / André Vander Vorst, Arye Rosen, Youji Kotsuka
Published Hoboken, N.J. : John Wiley & Sons : IEEE, ©2006

Copies

Description 1 online resource (xiii, 330 pages) : illustrations
Contents Cover Contents Preface Introduction 1 Fundamentals of Electromagnetics 1.1 RF and Microwave Frequency Ranges 1.2 Fields 1.3 Electromagnetics 1.3.1 Electric Field and Flux Density 1.3.2 Magnetic Field and Flux Density 1.3.3 Electromagnetic Field 1.3.4 Electromagnetic Wave 1.3.5 Antennas and Near Field 1.4 RF and Microwave Energy 1.4.1 Power and Energy 1.4.2 Influence of the Waveform 1.4.3 Blackbody Radiation 1.5 Penetration in Biological Tissues and Skin Effect 1.6 Relaxation, Resonance, and Display 1.6.1 Relaxation in Dielectrics 1.6.2 Resonance Absorption 1.6.3 Cole Cole Display 1.7 Dielectric Measurements 1.7.1 RF Measurements 1.7.2 Microwave Measurements 1.7.3 Liquids 1.7.4 Applicators 1.8 Exposure References Problems 2 RF/Microwave Interaction Mechanisms in Biological Materials 2.1 Bioelectricity 2.1.1 Fundamentals 2.1.2 Cells and Nerves 2.1.3 Bioelectric Phenomena 2.2 Tissue Characterization 2.2.1 Ionization and Nonionization 2.2.2 Dielectric Characterization 2.2.3 Dielectric Dispersion in Tissues 2.2.4 Measurements 2.3 Thermodynamics 2.4 Energy References Problems 3 Biological Effects 3.1 Absorption 3.1.1 Fundamentals 3.1.2 Dosimetry and SAR 3.1.3 Thermal Considerations 3.2 Nervous System 3.2.1 General Description 3.2.2 Effects on Brain and Spinal Cord 3.2.3 Blood Brain Barrier 3.2.4 Influence of Parameters of Microwave Exposure 3.2.5 Nervous System Modeling and Simulation 3.3 Cells and Membranes 3.4 Molecular Level 3.5 Low-Level Exposure and ELF Components 3.5.1 Microwave Syndrome 3.5.2 Low-Level Pulsed Exposure 3.5.3 ELF Components 3.6 Ear, Eye, and Heart 3.7 Influence of Drugs 3.8 Nonthermal, Microthermal, and Isothermal Effects 3.8.1 Microwaves as a Trigger 3.8.2 Entropy 3.9 Epidemiology Studies 3.10 Interferences 3.11 Radiation Hazards and Exposure Standards 3.11.1 Standards and Recommendations 3.11.2 Tissue Phantoms and SAR Measurements 3.11.3 Computational Methods for SAR Evaluation 3.11.4 Exposure of Body to Cell Phone and Base Station References Problems 4 Thermal Therapy 4.1 Introduction to Thermotherapy 4.2 Heating Principle 4.2.1 Foundations of Dielectric Heating Principle 4.2.2 RF Dielectric Heating Applicator 4.2.3 Microwave Dielectric Heating 4.2.4 Foundation of Inductive Heating Principle 4.2.5 Actual Inductive Heating Applicator 4.2.6 Detailed Theory of RF Dielectric Heating 4.2.7 Detailed Theory of Microwave Dielectric Heating 4.2.8 Detailed Theory of Inductive Heating 4.3 Hyperthermia 4.3.1 Biological Background of Hyperthermia 4.4 Method of Thermometry 4.4.1 Invasive Thermometry 4.4.2 Noninvasive Thermometry References Problems 5 EM Wave Absorbers Protecting Biological and Medical Environment 5.1 Foundation of EM Wave Absorbers 5.2 Classification of Wave Absorbers 5.2.1 Classification by Constituent Material 5.2.2 Classification by Structural Shape 5.3 Fundamental Principle 5.4 Fundamental Theory of EM Wave Absorbers 5.4.1 Single-Layer-Type Wave Absorber 5.4.2 Multilayer-Type Wave Absorber 5.4.3 Taper-Type Wave Absorber 5.5 Application of EM Absorber 5.5.1 Quarter-Wavelength-Type Wave Absorber 5.5.2 Single-Layer-Type Wave Absorber 5.5.3 Multilayer Wave Absorber 5.5.4 Pyramidal Wave Absorber 5.6 EM Wave Absorbers Based on Equivalent Transformation Method of Material Constant 5.6.1 Microwave Absorber with Multiholes 5.6.2 Weakly Magnetized Ferrite Absorber 5.6.3 Microwave Absorber with Surface-Printed Conductive Line Patterns 5.6.4 Integrated Circuit-Type Absorber 5.7 Method for Improving RF Field Distribution in a Small Room References Problems 6 RF/Microwave Delivery Systems for Therapeutic Applications 6.1 Introduction 6.2 Transmission Lines and Waveguides for Medical Applications 6.2.1 Coaxial Cable 6.2.2 Circular Waveguide 6.3 Antennas 6.3.1 Fundamentals 6.3.2 Antenna Configurations 6.4 RF and Microwave Ablation 6.4.1
Summary From engineering fundamentals to cutting-edge clinical applicationsThis book examines the biological effects of RF/microwaves and their medical applications. Readers will discover new developments in therapeutic applications in such areas as cardiology, urology, surgery, ophthalmology, and oncology. The authors also present developing applications in such areas as cancer detection and organ imaging. Focusing on frequency ranges from 100 kHz to 10 GHz, RF/Microwave Interaction with Biological Tissues is divided into six chapters:* Fundamentals in Electromagnetics--examines pe
Bibliography Includes bibliographical references and index
Notes English
Print version record
Subject Radio waves -- Physiological effect
Microwaves -- Physiological effect
Microwave heating -- Therapeutic use
Nonionizing radiation.
Tissues.
Microwaves -- therapeutic use
Radiation Effects
Radiation, Nonionizing
MEDICAL -- Physiology.
SCIENCE -- Life Sciences -- Human Anatomy & Physiology.
Tissues
Nonionizing radiation
Microwaves -- Physiological effect
Radio waves -- Physiological effect
Genre/Form Electronic books
Form Electronic book
Author Rosen, Arye.
Kotsuka, Y. (Youji), 1941-
ISBN 9780471752059
0471752053
0471752045
9780471752042
047173277X
9780471732778
9781615836154
1615836152
1280349670
9781280349676
9786610349678
6610349673
0470247126
9780470247129