Limit search to available items
Book Cover
E-book
Author Ladbrooke, Peter H

Title Nonlinear Design : FETs and HEMTs
Published Norwood : Artech House, 2021

Copies

Description 1 online resource (373 p.)
Contents Nonlinear Design: FETs and HEMTs -- Contents -- Preface -- Acknowledgments -- Introduction -- Part I -- Chapter 1 Introduction -- 1.1 The Statement of the Problem -- 1.2 Verifying the Approach in MMIC Design: GaAs FETs and HEMTs -- 1.3 Aims of the Present Work -- 1.3.1 Motivation and Practical Application -- 1.3.2 The Physics-to-CircuitModel Construct -- 1.3.3 Applicability -- 1.4 Preview of Results -- 1.5 Organization of the Book -- 1.6 A Note on Figures -- References -- Chapter 2 Summary of Approaches and Needs -- 2.1 Why Models Are Important -- 2.2 Types of Nonlinear Models -- 2.3 Desirable Attributes -- 2.4 Behavioral or Black Box Characterization -- 2.5 Properties of Large-SignalModels in More Detail -- 2.5.1 List of Properties -- 2.5.2 The Subthreshold Region -- 2.5.3 Consequences of Fitting Well to Some Features of iD (vGS,vDS) butNot Others -- 2.5.4 Thermal Considerations -- 2.5.5 Construction of the Model from Measurements -- 2.5.6 The Position of Commercial Extractors -- 2.5.7 FET Size Considerations -- 2.5.8 Model Openness in Construction and Usability -- 2.5.9 Constraints Placed upon Models by Circuit Simulators -- 2.6 Rauscher and Willing -- 2.7 The Curtice Quadratic Model -- 2.7.1 Expression Used for the Modeling Current -- 2.7.2 Expression Used for the Modeling Capacitance -- 2.7.3 Basis -- 2.7.4 Underlying Soundness -- 2.7.5 Measurements Required -- 2.7.6 Openness of Procedure for Extracting the Model from Measurements -- 2.7.7 Scalability -- 2.7.8 General Comments -- 2.8 The Curtice-EttenbergModel -- 2.8.1 Expressions Used for Modeling Current -- 2.8.2 Expressions Used for Modeling Capacitance -- 2.8.3 Basis -- 2.8.4 Underlying Soundness -- 2.8.5 Measurements Required -- 2.8.6 Openness of Procedure for Extracting the Model from Measurements -- 2.8.7 Scalability -- 2.9 The Materka-KacprzakModel
2.9.1 Expressions Used for Modeling Current -- 2.9.2 Expressions Used for Modeling Capacitance -- 2.9.3 Basis -- 2.9.4 Underlying Soundness -- 2.9.5 Measurements Required -- 2.9.6 Openness of Procedure for Extracting the Model from Measurements -- 2.9.7 Scalability -- 2.10 An Illustrated Application -- 2.10.1 Current Equation: Modified Materka -- 2.10.2 Capacitance Equations: Use of the Statz Expressions -- 2.10.3 Results -- 2.11 The Statz Model -- 2.11.1 Expressions Used for Modeling Current -- 2.11.2 Expressions Used for Modeling Capacitance -- 2.11.3 Basis -- 2.11.4 Underlying Soundness -- 2.11.5 Measurements Required -- 2.11.6 Openness of Procedure for Extracting the Model from Measurements -- 2.11.7 Scalability -- 2.12 TriQuint Own Model (TOM) -- 2.12.1 Expressions Used for Modeling Current -- 2.12.2 Expressions Used for Modeling Capacitance -- 2.12.3 Basis -- 2.12.4 Underlying Soundness -- 2.12.5 Measurements Required -- 2.12.6 Openness of Procedure for Extracting the Model from Measurements -- 2.12.7 Scalability -- 2.13 The EEFET3 Model -- 2.13.1 Basis -- 2.13.2 Underlying Soundness -- 2.13.3 Openness of Procedure for Extracting the Model from Measurements -- 2.14 Other Models Using the Commonplace Equivalent Circuit -- 2.14.1 Dortu-MullerMethod -- 2.14.2 Rodrigues-Tellez -- 2.14.3 Tajima -- 2.14.4 University of Cantabria Model -- 2.14.5 University College Dublin Model -- 2.15 The Parker-SkellernModel -- 2.15.1 Shortcomings in Previous Practice -- 2.15.2 Parker's Scheme: Nested Transformations -- 2.15.3 Expressions Used for Modeling Capacitance -- 2.15.4 Basis and Underlying Soundness -- 2.15.5 Measurements Required -- 2.15.6 Openness of Procedure for Extracting the Model from Measurements -- 2.15.7 Scalability -- 2.15.8 General Comments -- 2.16 The Root Model -- 2.16.1 Basis -- 2.16.2 Underlying Soundness -- 2.16.3 Measurements Required
2.16.4 Thermal Effects -- 2.16.5 Openness of Procedure for Extracting the Model from Measurements -- 2.16.6 General Comments -- 2.17 The Angelov Model -- 2.17.1 Expression Used for Modeling Current -- 2.17.2 Expression Used for Modeling Capacitance -- 2.17.3 Basis -- 2.17.4 Underlying Soundness -- 2.17.5 Measurements Required -- 2.17.6 Openness of Procedure for Extracting the Model from Measurements -- 2.17.7 Scalability -- 2.17.8 General Comments -- 2.18 Conclusion -- References -- Chapter 3 Practical Behavior of FETs -- 3.1 dc I(V), Dynamic I(V), and RF Properties -- 3.1.1 Example Differences Between dc I(V) and Dynamic i(v -- 3.1.2 Breakdown Different at RF from dc -- 3.1.3 Memory Effects: Surface States, Deep Levels, and Self-Heating -- 3.1.4 S-Parameters:dc Bias and Pulsed Bias -- 3.1.5 Device-to-DeviceVariations -- 3.2 Bias Dependence of the Elements -- 3.2.1 Common Practice: The Beginning with Rauscher and Willing -- 3.2.2 Fitting to S-Parameters:Examples -- 3.2.3 The Commonplace Model -- 3.2.4 Bias Dependence of the Elements: Examples -- 3.3 ?: A Vital But Overlooked Physical Variable -- References -- Chapter 4 The Standard Model:Deriving the Elements -- 4.1 Element Functions Obtained by Fitting: True or Askew? -- 4.2 Neglect of Nonlinear Terms -- 4.2.1 The Problem of Nonlinear Extraction -- 4.2.2 Extracted Versus True Nonlinear Element Functions -- 4.2.3 Consequences for Nonlinear Circuit Simulation -- 4.3 Difficult Cases: Early SiC FET Example -- 4.4 Improvements Towards a True Nonlinear Model -- References -- Chapter 5 The Capacitance Puzzlein the Standard Model -- 5.1 The Form of Cgd and Cds: Fact or Artefact? -- 5.2 The Composition of Cgc -- 5.3 C from g: Deriving Capacitance from Conductance -- 5.4 Standard Model Capacitance in Review -- References -- Chapter 6 Dynamic I(V) Measurements
6.1 Development of a Desktop Pulsed I(V) Instrument -- 6.2 Operation and Utilization -- 6.3 Memory and Other Effects -- 6.4 Contrariness as a Positive -- 6.5 Contemporary Instrumentation -- References -- Part II -- Chapter 7 Reformulating the Circuit Model -- 7.1 Introduction -- 7.2 The Core -- 7.3 Charge Flows When VGS Changes -- 7.4 Charge Flows When VDG Changes -- 7.5 Resistive and Ancillary Elements -- 7.6 Voltage Dependence of the Elements -- 7.7 Reduction in the Static State to the Standard Model -- 7.8 Previously Published Versions -- References -- Chapter 8 The Importance and Utility of ? -- 8.1 Nature and Origin -- 8.2 Pivotal Role in the Reformed Model -- 8.3 Inclusion in Circuit Simulators -- 8.4 X(?) as a Staple of Device Operation -- 8.5 A Repository of Information on Device Technology -- References -- Chapter 9 Extraction -- 9.1 Introduction -- 9.2 Obtaining the Element Functions -- 9.2.1 Obtaining the Standard Model Element Functions: The Fitter -- 9.2.2 Fitting the New Topology Model -- 9.3 Curve Fitting -- Reference -- Chapter 10 Obtaining the Currentand Capacitance Functions -- 10.1 Current Functions from Pulsed I(V) Measurements -- 10.2 Dynamic I(V) Reconstructor -- 10.3 Implications for Slow-RateTransients -- 10.4 Obtaining the Capacitance Functions -- 10.5 Charge Conservation -- 10.6 The Defining Case of VDS = 0V -- 10.7 Practical Example of Reformed Model Elements -- References -- Chapter 11 Practical Results -- 11.1 Introduction -- 11.2 First Test: Power Compression and Harmonic Generation -- 11.3 A 38 GHz Frequency Doubler -- 11.4 Two-Stageand Three-Stage500 mWMMIC -- 11.5 Harmonic Load Pull -- 11.6 Memory Effect: Basic Illustration -- References -- Chapter 12 Circuit Simulators -- 12.1 Introduction -- 12.2 Implementation in a Harmonic Balance Simulator -- 12.2.1 Particularizing the Model -- 12.2.2 Accommodating ?
12.2.3 Run Time and Convergence -- 12.3 Experience with a Time-DomainSimulator -- 12.4 Simulation Prospects -- References -- Part III -- Chapter 13 Fundamentals of FET Operation -- 13.1 Introduction -- 13.2 Electron Depletion and Transport -- 13.3 The Space-ChargeLayer Extension X -- 13.4 The Flat d Approximation -- 13.5 The Uniform EyX Termination Approximation -- 13.6 Expressions for VGC and VD′G -- 13.7 The d-LiftPrinciple -- 13.8 The Delay ?gm -- References -- Chapter 14 Current and Charge Conservation -- 14.1 Channel Current -- 14.2 Transreactance Current -- 14.3 Charge Conservation -- 14.4 Charge Storage by Pure Delay ? -- 14.5 Resistances RS and RI -- References -- Chapter 15 Charge Storage -- 15.1 Revisiting Capacitance -- 15.2 When VGS Changes -- 15.2.1 The Overall Picture -- 15.2.2 Branch Capacitance -- 15.2.3 Transcapacitance -- 15.2.4 Branch Charge Storage by Pure Delay -- 15.3 When VDS Changes -- 15.3.1 The Overall Picture -- 15.3.2 Branch Capacitance -- 15.3.3 Transcapacitance -- 15.3.4 Orthogonal Branch Charge Storage by Pure Delay -- 15.4 One Last Visit -- 15.4.1 Reconciliation of the Main Capacitances -- 15.4.2 Wherefore Cds? -- 15.4.3 The True Nature of the Standard Model -- 15.5 Enter the Transit Time -- References -- Chapter 16 Macro-CellSimulators -- 16.1 Introduction -- 16.2 Simulator Requirements -- 16.3 Macro-CellSolvers -- 16.3.1 The Macro-CellIdea -- 16.3.2 Construction -- 16.3.3 Choosing the Cells -- 16.3.4 Below-the-KneeRealism -- 16.3.5 Deconfinement of Hot Electrons -- 16.4 The PHEMT Macro-CellSolver -- 16.5 Applications and Limitations -- References -- Conclusion -- Acronyms and Abbreviations -- List of Symbols -- About the Author -- Index
Summary Despite its continuing popularity, the so-called standard circuit model of compound semiconductor field-effect transistors (FETs) and high electron mobility transistors (HEMTs) is shown to have a limitation for nonlinear analysis and design: it is valid only in the static limit. When the voltages and currents are time-varying, as they must be for these devices to have any practical use, the model progressively fails for higher specification circuits.This book shows how to reform the standard model to render it fully compliant with the way FETs and HEMTs actually function, thus rendering it valid dynamically. Proof-of-principle is demonstrated for several practical circuits, including a frequency doubler and amplifiers with demanding performance criteria. Methods for extracting both the reformulated model and the standard model are described, including a scheme for re-constructing from S-parameters the bias-dependent dynamic (or RF) I(V) characteristics along which devices work in real-world applications, and as needed for the design of nonlinear circuits using harmonic-balance and time-domain simulators.The book includes a historical review of how variations on the standard model theme evolved, leading up to one of the most widely used the Angelov (or Chalmers) model
Notes Description based upon print version of record
Subject Field-effect transistors -- Design and construction
Modulation-doped field-effect transistors -- Design and construction
Modulation-doped field-effect transistors -- Design and construction
Form Electronic book
ISBN 9781630818692
1630818690