Immunologic techniques based on the use of: (1) enzyme-antibody conjugates; (2) enzyme-antigen conjugates; (3) antienzyme antibody followed by its homologous enzyme; or (4) enzyme-antienzyme complexes. These are used histologically for visualizing or labeling tissue specimens
Immunologic techniques based on the use of: (1) enzyme-antibody conjugates; (2) enzyme-antigen conjugates; (3) antienzyme antibody followed by its homologous enzyme; or (4) enzyme-antienzyme complexes. These are used histologically for visualizing or labeling tissue specimens
Immunologic techniques based on the use of: (1) enzyme-antibody conjugates; (2) enzyme-antigen conjugates; (3) antienzyme antibody followed by its homologous enzyme; or (4) enzyme-antienzyme complexes. These are used histologically for visualizing or labeling tissue specimens
Immunologic techniques based on the use of: (1) enzyme-antibody conjugates; (2) enzyme-antigen conjugates; (3) antienzyme antibody followed by its homologous enzyme; or (4) enzyme-antienzyme complexes. These are used histologically for visualizing or labeling tissue specimens
Immunologic techniques based on the use of: (1) enzyme-antibody conjugates; (2) enzyme-antigen conjugates; (3) antienzyme antibody followed by its homologous enzyme; or (4) enzyme-antienzyme complexes. These are used histologically for visualizing or labeling tissue specimens
Immunologic techniques based on the use of: (1) enzyme-antibody conjugates; (2) enzyme-antigen conjugates; (3) antienzyme antibody followed by its homologous enzyme; or (4) enzyme-antienzyme complexes. These are used histologically for visualizing or labeling tissue specimens
Immunologic techniques based on the use of: (1) enzyme-antibody conjugates; (2) enzyme-antigen conjugates; (3) antienzyme antibody followed by its homologous enzyme; or (4) enzyme-antienzyme complexes. These are used histologically for visualizing or labeling tissue specimens
A strong oxidizing agent used in aqueous solution as a ripening agent, bleach, and topical anti-infective. It is relatively unstable and solutions deteriorate over time unless stabilized by the addition of acetanilide or similar organic materials
A family of ubiquitously-expressed peroxidases that play a role in the reduction of a broad spectrum of PEROXIDES like HYDROGEN PEROXIDE; LIPID PEROXIDES and peroxinitrite. They are found in a wide range of organisms, such as BACTERIA; PLANTS; and MAMMALS. The enzyme requires the presence of a thiol-containing intermediate such as THIOREDOXIN as a reducing cofactor
A family of ubiquitously-expressed peroxidases that play a role in the reduction of a broad spectrum of PEROXIDES like HYDROGEN PEROXIDE; LIPID PEROXIDES and peroxinitrite. They are found in a wide range of organisms, such as BACTERIA; PLANTS; and MAMMALS. The enzyme requires the presence of a thiol-containing intermediate such as THIOREDOXIN as a reducing cofactor
A family of ubiquitously-expressed peroxidases that play a role in the reduction of a broad spectrum of PEROXIDES like HYDROGEN PEROXIDE; LIPID PEROXIDES and peroxinitrite. They are found in a wide range of organisms, such as BACTERIA; PLANTS; and MAMMALS. The enzyme requires the presence of a thiol-containing intermediate such as THIOREDOXIN as a reducing cofactor
A family of ubiquitously-expressed peroxidases that play a role in the reduction of a broad spectrum of PEROXIDES like HYDROGEN PEROXIDE; LIPID PEROXIDES and peroxinitrite. They are found in a wide range of organisms, such as BACTERIA; PLANTS; and MAMMALS. The enzyme requires the presence of a thiol-containing intermediate such as THIOREDOXIN as a reducing cofactor
A family of ubiquitously-expressed peroxidases that play a role in the reduction of a broad spectrum of PEROXIDES like HYDROGEN PEROXIDE; LIPID PEROXIDES and peroxinitrite. They are found in a wide range of organisms, such as BACTERIA; PLANTS; and MAMMALS. The enzyme requires the presence of a thiol-containing intermediate such as THIOREDOXIN as a reducing cofactor
A family of ubiquitously-expressed peroxidases that play a role in the reduction of a broad spectrum of PEROXIDES like HYDROGEN PEROXIDE; LIPID PEROXIDES and peroxinitrite. They are found in a wide range of organisms, such as BACTERIA; PLANTS; and MAMMALS. The enzyme requires the presence of a thiol-containing intermediate such as THIOREDOXIN as a reducing cofactor
A family of ubiquitously-expressed peroxidases that play a role in the reduction of a broad spectrum of PEROXIDES like HYDROGEN PEROXIDE; LIPID PEROXIDES and peroxinitrite. They are found in a wide range of organisms, such as BACTERIA; PLANTS; and MAMMALS. The enzyme requires the presence of a thiol-containing intermediate such as THIOREDOXIN as a reducing cofactor
A family of ubiquitously-expressed peroxidases that play a role in the reduction of a broad spectrum of PEROXIDES like HYDROGEN PEROXIDE; LIPID PEROXIDES and peroxinitrite. They are found in a wide range of organisms, such as BACTERIA; PLANTS; and MAMMALS. The enzyme requires the presence of a thiol-containing intermediate such as THIOREDOXIN as a reducing cofactor
A family of ubiquitously-expressed peroxidases that play a role in the reduction of a broad spectrum of PEROXIDES like HYDROGEN PEROXIDE; LIPID PEROXIDES and peroxinitrite. They are found in a wide range of organisms, such as BACTERIA; PLANTS; and MAMMALS. The enzyme requires the presence of a thiol-containing intermediate such as THIOREDOXIN as a reducing cofactor
1
Peroxiredoxins. : Peroxiredoxin systems : structures and functions / edited by Leopold Flohé and J. Robin Harris
2007
1
Peroxiredoxins -- physiology : Peroxiredoxin systems : structures and functions / edited by Leopold Flohé and J. Robin Harris
A heterogeneous group of inherited metabolic disorders marked by absent or dysfunctional PEROXISOMES. Peroxisomal enzymatic abnormalities may be single or multiple. Biosynthetic peroxisomal pathways are compromised, including the ability to synthesize ether lipids and to oxidize long-chain fatty acid precursors. Diseases in this category include ZELLWEGER SYNDROME; INFANTILE REFSUM DISEASE; rhizomelic chondrodysplasia (CHONDRODYSPLASIA PUNCTATA, RHIZOMELIC); hyperpipecolic acidemia; neonatal adrenoleukodystrophy; and ADRENOLEUKODYSTROPHY (X-linked). Neurologic dysfunction is a prominent feature of most peroxisomal disorders
A heterogeneous group of inherited metabolic disorders marked by absent or dysfunctional PEROXISOMES. Peroxisomal enzymatic abnormalities may be single or multiple. Biosynthetic peroxisomal pathways are compromised, including the ability to synthesize ether lipids and to oxidize long-chain fatty acid precursors. Diseases in this category include ZELLWEGER SYNDROME; INFANTILE REFSUM DISEASE; rhizomelic chondrodysplasia (CHONDRODYSPLASIA PUNCTATA, RHIZOMELIC); hyperpipecolic acidemia; neonatal adrenoleukodystrophy; and ADRENOLEUKODYSTROPHY (X-linked). Neurologic dysfunction is a prominent feature of most peroxisomal disorders
A heterogeneous group of inherited metabolic disorders marked by absent or dysfunctional PEROXISOMES. Peroxisomal enzymatic abnormalities may be single or multiple. Biosynthetic peroxisomal pathways are compromised, including the ability to synthesize ether lipids and to oxidize long-chain fatty acid precursors. Diseases in this category include ZELLWEGER SYNDROME; INFANTILE REFSUM DISEASE; rhizomelic chondrodysplasia (CHONDRODYSPLASIA PUNCTATA, RHIZOMELIC); hyperpipecolic acidemia; neonatal adrenoleukodystrophy; and ADRENOLEUKODYSTROPHY (X-linked). Neurologic dysfunction is a prominent feature of most peroxisomal disorders
A heterogeneous group of inherited metabolic disorders marked by absent or dysfunctional PEROXISOMES. Peroxisomal enzymatic abnormalities may be single or multiple. Biosynthetic peroxisomal pathways are compromised, including the ability to synthesize ether lipids and to oxidize long-chain fatty acid precursors. Diseases in this category include ZELLWEGER SYNDROME; INFANTILE REFSUM DISEASE; rhizomelic chondrodysplasia (CHONDRODYSPLASIA PUNCTATA, RHIZOMELIC); hyperpipecolic acidemia; neonatal adrenoleukodystrophy; and ADRENOLEUKODYSTROPHY (X-linked). Neurologic dysfunction is a prominent feature of most peroxisomal disorders
A heterogeneous group of inherited metabolic disorders marked by absent or dysfunctional PEROXISOMES. Peroxisomal enzymatic abnormalities may be single or multiple. Biosynthetic peroxisomal pathways are compromised, including the ability to synthesize ether lipids and to oxidize long-chain fatty acid precursors. Diseases in this category include ZELLWEGER SYNDROME; INFANTILE REFSUM DISEASE; rhizomelic chondrodysplasia (CHONDRODYSPLASIA PUNCTATA, RHIZOMELIC); hyperpipecolic acidemia; neonatal adrenoleukodystrophy; and ADRENOLEUKODYSTROPHY (X-linked). Neurologic dysfunction is a prominent feature of most peroxisomal disorders
A heterogeneous group of inherited metabolic disorders marked by absent or dysfunctional PEROXISOMES. Peroxisomal enzymatic abnormalities may be single or multiple. Biosynthetic peroxisomal pathways are compromised, including the ability to synthesize ether lipids and to oxidize long-chain fatty acid precursors. Diseases in this category include ZELLWEGER SYNDROME; INFANTILE REFSUM DISEASE; rhizomelic chondrodysplasia (CHONDRODYSPLASIA PUNCTATA, RHIZOMELIC); hyperpipecolic acidemia; neonatal adrenoleukodystrophy; and ADRENOLEUKODYSTROPHY (X-linked). Neurologic dysfunction is a prominent feature of most peroxisomal disorders