Limit search to available items
Book Cover
E-book
Author Razeghifard, Reza, 1964- editor.

Title Natural and artificial photosynthesis : solar power as an energy source / editor, Reza Razeghifard
Published Hoboken, New Jersey : John Wiley and Sons, Inc., [2013]
©2013

Copies

Description 1 online resource
Contents Machine generated contents note: 1.1. Introduction / Diego Castano -- 1.2. Sun / Diego Castano -- 1.3. Light / Diego Castano -- 1.4. Thermodynamics / Diego Castano -- 1.5. Photovoltaics / Diego Castano -- 1.6. Photosynthesis / Diego Castano -- References / Diego Castano -- 2.1. Introduction / Dmitriy Shevela / Govindjee / Lars Olof Björn -- 2.1.1. Importance of Photosynthesis: Why Study Photosynthesis? / Dmitriy Shevela / Govindjee / Lars Olof Björn -- 2.1.2. Oxygenic Versus Anoxygenic Photosynthesis / Dmitriy Shevela / Govindjee / Lars Olof Björn -- 2.1.3. What Can We Learn from Natural Photosynthesis to Achieve Artificial Photosynthesis? / Dmitriy Shevela / Govindjee / Lars Olof Björn -- 2.1.4. Atomic Level Structures of Photosynthetic Systems / Dmitriy Shevela / Govindjee / Lars Olof Björn -- 2.1.5. Scope of the Chapter / Dmitriy Shevela / Govindjee / Lars Olof Björn -- 2.2. Path of Energy: From Photons to Charge Separation / Dmitriy Shevela / Govindjee / Lars Olof Björn -- 2.2.1. Overview: Harvesting Sunlight for Redox Chemistry / Dmitriy Shevela / Govindjee / Lars Olof Björn -- 2.2.2. Light absorption and Light-Harvesting Antennas / Dmitriy Shevela / Govindjee / Lars Olof Björn -- 2.2.3. Excitation Energy Transfer: Coherent Versus Incoherent or Wavelike Versus Hopping / Dmitriy Shevela / Govindjee / Lars Olof Björn -- 2.2.4. Concluding Remarks and Future Perspectives for Artificial Photosynthesis / Dmitriy Shevela / Govindjee / Lars Olof Björn -- 2.3. Electron Transfer Pathways / Dmitriy Shevela / Govindjee / Lars Olof Björn -- 2.3.1. Overview of the Primary Photochemistry and the Electron Transfer Chain / Dmitriy Shevela / Govindjee / Lars Olof Björn -- 2.3.2. Components Associated with P680 and P700 and the Entry into the Electron Transfer Chain / Dmitriy Shevela / Govindjee / Lars Olof Björn -- 2.3.3. Photosystem II: Function and Electron Transfer Pathway / Dmitriy Shevela / Govindjee / Lars Olof Björn -- 2.3.4. Photosystem I: Function and the Electron Transfer Pathways / Govindjee / Lars Olof Björn / Dmitriy Shevela -- 2.3.5. Intersystem Electron Transfer / Dmitriy Shevela / Govindjee / Lars Olof Björn -- 2.3.6. Water as a Source of Electrons for the Photosynthetic Electron Transfer Chain / Dmitriy Shevela / Govindjee / Lars Olof Björn -- 2.3.7. Can the Rate Limitation of O2 Production by Photosystem II Be Improved in Future Artificial Water-Splitting Systems? / Dmitriy Shevela / Govindjee / Lars Olof Björn -- 2.4. Photophosphorylation / Dmitriy Shevela / Govindjee / Lars Olof Björn -- 2.4.1. Overview / Dmitriy Shevela / Govindjee / Lars Olof Björn -- 2.4.2. Mechanism of ATP Synthesis / Dmitriy Shevela / Govindjee / Lars Olof Björn -- 2.4.3. Concluding Remarks / Dmitriy Shevela / Govindjee / Lars Olof Björn -- 2.5. Carbon Dioxide to Organic Compounds / Dmitriy Shevela / Govindjee / Lars Olof Björn -- 2.5.1. Overview of Carbon Dioxide Assimilation Systems in Oxygenic Organisms / Dmitriy Shevela / Govindjee / Lars Olof Björn -- 2.5.2. C3 Pathway Versus C4 Pathway / Dmitriy Shevela / Govindjee / Lars Olof Björn -- 2.5.3. C3 versus C4 Plants During Glacial/Interglacial Periods / Dmitriy Shevela / Lars Olof Björn / Govindjee -- 2.5.4. Concluding Remarks: Can the Natural Assimilation Pathways Be Improved to Help Solve the Energy Crisis? / Dmitriy Shevela / Govindjee / Lars Olof Björn -- 2.6. Evolution of Oxygenic Photosynthesis / Dmitriy Shevela / Govindjee / Lars Olof Björn -- 2.6.1. Overview / Dmitriy Shevela / Govindjee / Lars Olof Björn -- 2.6.2. Two Photosystems for Oxygenic Photosynthesis / Dmitriy Shevela / Govindjee / Lars Olof Björn -- 2.6.3. Evolutionary Acclimation to Decreasing CO2 Availability / Dmitriy Shevela / Govindjee / Lars Olof Björn -- 2.7. Some Interesting Questions about Whole Plants / Dmitriy Shevela / Govindjee / Lars Olof Björn -- 2.7.1. Overview / Dmitriy Shevela / Govindjee / Lars Olof Björn -- 2.7.2. Why Are There Grana in Land Plants but Not in Algae? / Dmitriy Shevela / Govindjee / Lars Olof Björn -- 2.7.3. Why Are Leaves Darker on the Upper Side than on the Lower Side? / Dmitriy Shevela / Govindjee / Lars Olof Björn -- 2.7.4. How Much Do Different Layers in the Leaf Contribute to Photosynthesis? / Dmitriy Shevela / Govindjee / Lars Olof Björn -- 2.7.5. How Does Photosynthesis Interact with Climate-Atmosphere? / Dmitriy Shevela / Govindjee / Lars Olof Björn -- 2.7.6. Is There Photosynthesis Without CO2 Assimilation (N2 Fixation in Cyanobacteria, Light-Dependent N3- Assimilation in Land Plants)? / Dmitriy Shevela / Govindjee / Lars Olof Björn -- 2.7.7. How Can Animals Carry Out Photosynthesis? / Dmitriy Shevela / Govindjee / Lars Olof Björn -- 2.8. Perspectives for the Future / Dmitriy Shevela / Govindjee / Lars Olof Björn -- 2.9. Summary / Dmitriy Shevela / Govindjee / Lars Olof Björn -- Acknowledgments / Dmitriy Shevela / Govindjee / Lars Olof Björn -- References / Dmitriy Shevela / Govindjee / Lars Olof Björn -- 3.1. Introduction / Gernot Renger -- 3.2. Overall Reaction Pattern of Photosynthesis and Respiration / Gernot Renger -- 3.3. Bioenergetic Limit of Solar Energy Exploitation: Water Splitting / Gernot Renger -- 3.4. Humankind's Dream of Using Water and Solar Radiation as "Clean Fuel" / Gernot Renger -- 3.5. Nature's Blueprint of Light-Induced Water Splitting / Gernot Renger -- 3.6. Types of Approaches in Performing Light-Driven H2 and O2 Formation from Water / Gernot Renger -- 3.6.1. Use of Photosynthetic Organisms / Gernot Renger -- 3.6.2. Hybrid Systems / Gernot Renger -- 3.6.3. Synthetic Systems / Gernot Renger -- 3.6.4. Oxidative Water Splitting into O2 and 4H+ / Gernot Renger -- 3.6.5. Synthetic WOCs / Gernot Renger -- 3.6.6. Light-Induced Water Splitting in Photosystem II / Gernot Renger -- 3.7. Light-Induced "Stable" Charge Separation / Gernot Renger -- 3.8. Energetics of Light-Induced Charge Separation / Gernot Renger -- 3.9. Oxidative Water Splitting: The Kok Cycle / Gernot Renger -- 3.10. Yz Oxidation by P680 + [" / Gernot Renger -- 3.11. Structure and Function of the WOC / Gernot Renger -- 3.11.1. Structure of the Catalytic Mn-Ca Cluster and its Coordination Sphere / Gernot Renger -- 3.11.2. Electronic Configuration and Nuclear Geometry in the Si States of the Catalytic Site / Gernot Renger -- 3.11.3. Kinetics of Oxidative Water Splitting in the WOC / Gernot Renger -- 3.11.4. Substrate/Product Pathways / Gernot Renger -- 3.11.5. Mechanism of Oxidative Water Splitting / Gernot Renger -- 3.12. Concluding Remarks / Gernot Renger -- Acknowledgments / Gernot Renger -- References / Gernot Renger -- 4.1. Introduction / Reza Razeghifard -- 4.2. Organic Pigment Assemblies on Electrodes / Reza Razeghifard -- 4.3. Photosystem Assemblies on Electrodes / Reza Razeghifard -- 4.4. Hydrogen Production by Photosystem I Hybrid Systems / Reza Razeghifard -- 4.5. Mimicking Water Oxidation with Manganese Complexes / Reza Razeghifard -- 4.6. Protein Design for Introducing Manganese Chemistry in Proteins / Reza Razeghifard -- 4.7. Protein Design and Photoactive Proteins with Chl Derivatives / Reza Razeghifard -- 4.8. Conclusion 133 / Reza Razeghifard -- Acknowledgment / Reza Razeghifard -- References / Reza Razeghifard -- 5.1. Ruthenium(II) / Dimitrios G. Giarikos -- 5.2. Ligand Influence on the Photochemistry of Ru(II) / Dimitrios G. Giarikos -- 5.3. Importance of Polypyridyl Ligands and Metal Ion for Tuning of MLCT Transitions / Dimitrios G. Giarikos -- 5.4. Electron Transfer of Ru(II) Complexes / Dimitrios G. Giarikos -- 5.5. Light-Harvesting Complexes Using Ru(II) Complexes / Dimitrios G. Giarikos -- 5.6. Ru(II) Artificial Photosystem Models for Photosystem II / Dimitrios G. Giarikos -- 5.7. Ru (II) Artificial Photosystem Models for Hydrogenase / Dimitrios G. Giarikos -- 5.8. Conclusion / Dimitrios G. Giarikos -- References / Dimitrios G. Giarikos -- 6.1. Introduction / Kanhaiya Kumar / Debabrata Das -- 6.2. Microbiology / Kanhaiya Kumar / Debabrata Das -- 6.3. Biochemistry of CO2 Fixation / Kanhaiya Kumar / Debabrata Das -- 6.3.1. CO2 Assimilation and Concentrating Mechanisms in Algae / Kanhaiya Kumar / Debabrata Das -- 6.3.2. Carbon-Concentrating Mechanisms (CCMs) / Kanhaiya Kumar / Debabrata Das -- 6.4. Parameters Affecting the CO2 Sequestration Process / Kanhaiya Kumar / Debabrata Das -- 6.4.1. Selection of Algal Species / Kanhaiya Kumar / Debabrata Das -- 6.4.2. Effect of Flue Gas Component / Kanhaiya Kumar / Debabrata Das -- 6.4.3. Effect of Physiochemical Parameters / Kanhaiya Kumar / Debabrata Das -- 6.4.4. Issues of Product Inhibition / Kanhaiya Kumar / Debabrata Das -- 6.5. Hydrogen Production by Cyanobacteria / Kanhaiya Kumar / Debabrata Das -- 6.5.1. Mechanism of Hydrogen Production / Kanhaiya Kumar / Debabrata Das -- 6.5.2. Mode of Hydrogen Production / Kanhaiya Kumar / Debabrata Das -- 6.5.3. Hydrogenase Versus Nitrogenase-Based Hydrogen Production / Kanhaiya Kumar / Debabrata Das -- 6.5.4. Factors Affecting Hydrogen Production in Cyanobacteria / Kanhaiya Kumar / Debabrata Das -- 6.5.5. Recent Advances in the Field of Hydrogen Production Using Cyanobacteria / Kanhaiya Kumar / Debabrata Das -- 6.6. Mechanisms of H2 Production in Green Algae / Kanhaiya Kumar / Debabrata Das -- 6.6.1. Light Fermentation / Kanhaiya Kumar / Debabrata Das -- 6.6.2. Dark Fermentation / Kanhaiya Kumar / Debabrata Das -- 6.6.3. Use of Chemicals / Kanhaiya Kumar / Debabrata Das
Note continued: 6.6.4. Sulfur Deprivation / Kanhaiya Kumar / Debabrata Das -- 6.6.5. Control of Sulfur Quantity / Kanhaiya Kumar / Debabrata Das -- 6.6.6. Immobilization / Kanhaiya Kumar / Debabrata Das -- 6.6.7. Molecular Approach / Kanhaiya Kumar / Debabrata Das -- 6.6.8. Recent Trends in the Field of Hydrogen Production by Green Algae / Kanhaiya Kumar / Debabrata Das -- 6.7. Photobioreactors / Debabrata Das / Kanhaiya Kumar -- 6.7.1. Vertical Tubular Photobioreactor / Kanhaiya Kumar / Debabrata Das -- 6.7.2. Horizontal Tubular Photobioreactor / Kanhaiya Kumar / Debabrata Das -- 6.7.3. Helical Tubular Photobioreactor / Kanhaiya Kumar / Debabrata Das -- 6.7.4. Flat Panel Photobioreactor / Kanhaiya Kumar / Debabrata Das -- 6.7.5. Stirred Tank Photobioreactor / Kanhaiya Kumar / Debabrata Das -- 6.7.6. Hybrid Photobioreactor / Kanhaiya Kumar / Debabrata Das -- 6.8. Conclusion / Kanhaiya Kumar / Debabrata Das -- Acknowledgments / Kanhaiya Kumar / Debabrata Das -- References / Kanhaiya Kumar / Debabrata Das -- 7.1. Carbon Sequestration by Biomass / John W.K. Oliver / Shota Atsumi -- 7.2. Introduction to Cyanobacteria / John W.K. Oliver / Shota Atsumi -- 7.3. CO2 Uptake Efficiency of Cyanobacteria / John W.K. Oliver / Shota Atsumi -- 7.4. Mitigation of Costs Through Captured-Carbon Products / John W.K. Oliver / Shota Atsumi -- 7.5. Captured-Carbon Products from Engineered Cyanobacteria / John W.K. Oliver / Shota Atsumi -- 7.5.1. Isobutyraldehyde / John W.K. Oliver / Shota Atsumi -- 7.5.2. Isobutanol / John W.K. Oliver / Shota Atsumi -- 7.5.3. Fatty Acids / John W.K. Oliver / Shota Atsumi -- 7.5.4. Hydrocarbons / John W.K. Oliver / Shota Atsumi -- 7.5.5. 1-Butanol / John W.K. Oliver / Shota Atsumi -- 7.5.6. Isoprene / John W.K. Oliver / Shota Atsumi -- 7.5.7. Hydrogen / John W.K. Oliver / Shota Atsumi -- 7.5.8. Poly-3-hydroxybutyrate / John W.K. Oliver / Shota Atsumi -- 7.5.9. Indirect Production Technology / John W.K. Oliver / Shota Atsumi -- 7.6. Conclusion / John W.K. Oliver / Shota Atsumi -- References / John W.K. Oliver / Shota Atsumi -- 8.1. Introduction / Helena M. Amaro / M. Glória Esquivel / Teresa S. Pinto / F. Xavier Malcata -- 8.2. Hydrogenase Engineering / Helena M. Amaro / M. Glória Esquivel / Teresa S. Pinto / F. Xavier Malcata -- 8.3. Metabolic Reprograming / Helena M. Amaro / M. Glória Esquivel / Teresa S. Pinto / F. Xavier Malcata -- 8.4. Light Capture Improvement / M. Glória Esquivel / Teresa S. Pinto / F. Xavier Malcata / Helena M. Amaro -- Acknowledgments / Helena M. Amaro / M. Glória Esquivel / Teresa S. Pinto / F. Xavier Malcata -- References / Helena M. Amaro / M. Glória Esquivel / Teresa S. Pinto / F. Xavier Malcata -- 9.1. Introduction / Archana Tiwari / Anjana Pandey -- 9.2. Advantages of Algae / Archana Tiwari / Anjana Pandey -- 9.3. Algal Strains and Biofuel Production / Archana Tiwari / Anjana Pandey -- 9.4. Algal Biofuels / Archana Tiwari / Anjana Pandey -- 9.4.1. Complete Cell Biomass / Archana Tiwari / Anjana Pandey -- 9.4.2. Lipids / Archana Tiwari / Anjana Pandey -- 9.4.3. Biodiesel / Archana Tiwari / Anjana Pandey -- 9.4.4. Advantages of Biodiesel from Algae Oil / Archana Tiwari / Anjana Pandey -- 9.4.5. Hydrocarbons / Archana Tiwari / Anjana Pandey -- 9.4.6. Hydrogen / Archana Tiwari / Anjana Pandey -- 9.4.7. Ethanol / Archana Tiwari / Anjana Pandey -- 9.4.8. Unique Products / Archana Tiwari / Anjana Pandey -- 9.5. Algal Cultivation for Biofuel Production / Archana Tiwari / Anjana Pandey -- 9.5.1. Carbon Dioxide Capture / Archana Tiwari / Anjana Pandey -- 9.5.2. Light / Archana Tiwari / Anjana Pandey -- 9.5.3. Nutrient Removal / Archana Tiwari / Anjana Pandey -- 9.5.4. Temperature / Archana Tiwari / Anjana Pandey -- 9.5.5. Biomass Harvesting / Archana Tiwari / Anjana Pandey -- 9.6. Photobioreactors Employed for Algal Biofuels / Archana Tiwari / Anjana Pandey -- 9.6.1. Tubular Photobioreactors / Archana Tiwari / Anjana Pandey -- 9.6.2. Flat Panel Photobioreactors / Archana Tiwari / Anjana Pandey -- 9.6.3. Offshore Membrane Enclosure for Growing Algae (OMEGA) / Archana Tiwari / Anjana Pandey -- 9.7. Recent Achievements in Algal Biofuels / Archana Tiwari / Anjana Pandey -- 9.8. Strategies for Enhancement of Algal Biofuel Production / Archana Tiwari / Anjana Pandey -- 9.8.1. Biorefinery: The High-Value Coproduct Strategy / Archana Tiwari / Anjana Pandey -- 9.8.2. Exploration of Growth Conditions and Nutrients / Archana Tiwari / Anjana Pandey -- 9.8.3. Design of Advanced Photobioreactors / Archana Tiwari / Anjana Pandey -- 9.8.4. Biotechnological Tools / Archana Tiwari / Anjana Pandey -- 9.8.5. Cost-Effective Technologies for Biomass Harvesting and Drying / Archana Tiwari / Anjana Pandey -- 9.9. Conclusion / Archana Tiwari / Anjana Pandey -- References / Archana Tiwari / Anjana Pandey -- 10.1. Introduction / Ela Eroglu / Matthew Timmins / Steven M. Smith -- 10.2. Hydrogen Production by Algae / Ela Eroglu / Matthew Timmins / Steven M. Smith -- 10.3. Hydrogenase Enzyme / Ela Eroglu / Matthew Timmins / Steven M. Smith -- 10.4. Diversity of Hydrogen-Producing Algae / Ela Eroglu / Matthew Timmins / Steven M. Smith -- 10.5. Model Microalgae for H2 Production Studies: Chlamydomonas Reinhardtii / Ela Eroglu / Steven M. Smith / Matthew Timmins -- 10.6. Approaches for Enhancing Hydrogen Production / Ela Eroglu / Steven M. Smith / Matthew Timmins -- 10.6.1. Immobilization Processes / Ela Eroglu / Steven M. Smith / Matthew Timmins -- 10.6.2. Increasing the Resistance of Algal Cells to Stress Conditions / Ela Eroglu / Steven M. Smith / Matthew Timmins -- 10.6.3. Optimization of Bioreactor Conditions / Ela Eroglu / Steven M. Smith / Matthew Timmins -- 10.6.4. Integrated Photosynthetic Systems / Ela Eroglu / Steven M. Smith / Matthew Timmins -- 10.6.5. Genetic Engineering Approaches to Improve Photosynthetic Efficiency / Ela Eroglu / Steven M. Smith / Matthew Timmins -- 10.6.6. Metabolic Pathways of H2 Production / Ela Eroglu / Steven M. Smith / Matthew Timmins -- 10.7. Conclusion / Ela Eroglu / Steven M. Smith / Matthew Timmins -- References / Ela Eroglu / Steven M. Smith / Matthew Timmins -- 11.1. Introduction / Niels Thomas Eriksen -- 11.2. Design of Photobioreactors / Niels Thomas Eriksen -- 11.3. Limitations to Productivity of Microalgal Cultures / Niels Thomas Eriksen -- 11.4. Actual Productivities of Microalgal Cultures / Niels Thomas Eriksen -- 11.5. Distribution of Light in Photobioreactors / Niels Thomas Eriksen -- 11.6. Gas Exchange in Photobioreactors / Niels Thomas Eriksen -- 11.7. Shear Stress in Photobioreactors / Niels Thomas Eriksen -- 11.8. Current Trends in Photobioreactor Development / Niels Thomas Eriksen -- Acknowledgment / Niels Thomas Eriksen -- References / Niels Thomas Eriksen -- 12.1. Introduction / Giuseppe Olivieri / Antonio Marzocchella / Piero Salatino -- 12.2. Relevant Issues for Design and Operation of Systems for Microalgal Cultures / Giuseppe Olivieri / Antonio Marzocchella / Piero Salatino -- 12.2.1. Stoichiometry of Microalgal Growth / Giuseppe Olivieri / Antonio Marzocchella / Piero Salatino -- 12.2.2. Microalgal Kinetics / Giuseppe Olivieri / Antonio Marzocchella / Piero Salatino -- 12.2.3. Mass Balance / Giuseppe Olivieri / Antonio Marzocchella / Piero Salatino -- 12.2.4. Energy Balance / Giuseppe Olivieri / Antonio Marzocchella / Piero Salatino -- 12.2.5. Basic System Design of Microalgal Cultivation / Giuseppe Olivieri / Antonio Marzocchella / Piero Salatino -- 12.2.6. Gas-Liquid Mass Transport / Giuseppe Olivieri / Antonio Marzocchella / Piero Salatino -- 12.2.7. Mixing / Giuseppe Olivieri / Antonio Marzocchella / Piero Salatino -- 12.3. Open Systems / Giuseppe Olivieri / Antonio Marzocchella / Piero Salatino -- 12.3.1. Typologies / Giuseppe Olivieri / Antonio Marzocchella / Piero Salatino -- 12.3.2. Mass Balances / Giuseppe Olivieri / Antonio Marzocchella / Piero Salatino -- 12.3.3. Energy Balance / Giuseppe Olivieri / Antonio Marzocchella / Piero Salatino -- 12.3.4. Gas-Liquid Mass Transfer / Giuseppe Olivieri / Antonio Marzocchella / Piero Salatino -- 12.4. Closed Systems: Photobioreactors / Giuseppe Olivieri / Antonio Marzocchella / Piero Salatino -- 12.4.1. Photobioreactor Typologies / Giuseppe Olivieri / Antonio Marzocchella / Piero Salatino -- 12.4.2. Mass Balances / Giuseppe Olivieri / Antonio Marzocchella / Piero Salatino -- 12.4.3. Energy Balance / Giuseppe Olivieri / Antonio Marzocchella / Piero Salatino -- 12.4.4. Cultivation System Design / Giuseppe Olivieri / Antonio Marzocchella / Piero Salatino -- 12.4.5. Gas-Liquid Mass Transfer / Giuseppe Olivieri / Antonio Marzocchella / Piero Salatino -- 12.5. Novel Photobioreactor Configurations / Giuseppe Olivieri / Antonio Marzocchella / Piero Salatino -- 12.6. Case Study: Intensive Production of Bio-Oil / Giuseppe Olivieri / Antonio Marzocchella / Piero Salatino -- 12.6.1. Assessment of Maximum Productivity / Giuseppe Olivieri / Antonio Marzocchella / Piero Salatino -- 12.6.2. Economic Assessment / Piero Salatino / Giuseppe Olivieri / Antonio Marzocchella -- Acknowledgments / Giuseppe Olivieri / Antonio Marzocchella / Piero Salatino -- References / Giuseppe Olivieri / Antonio Marzocchella / Piero Salatino -- 13.1. Introduction / Navid R. Moheimani / Pouria Mehrani / Mark P. McHenry
Note continued: 13.2. Biofuel Supply, Demand, Production, and New Feedstocks / Navid R. Moheimani / Pouria Mehrani / Mark P. McHenry -- 13.3. Feasibility of Photosynthetic Fuel Production / Navid R. Moheimani / Pouria Mehrani / Mark P. McHenry -- 13.4. Biodiesel Production and Feedstocks / Navid R. Moheimani / Pouria Mehrani / Mark P. McHenry -- 13.5. Macroalgae Biofuel Feedstocks and Production / Navid R. Moheimani / Mark P. McHenry / Pouria Mehrani -- 13.6. Conclusion / Navid R. Moheimani / Pouria Mehrani / Mark P. McHenry -- References / Navid R. Moheimani / Pouria Mehrani / Mark P. McHenry -- 14.1. Introduction / Razif Harun / Hassan J. / Michael K. Danquah / Lucy A. Arthur / Li J.S. Shu -- 14.2. Technology Selection and Process Design / Razif Harun / Hassan J. / Michael K. Danquah / Lucy A. Arthur / Li J.S. Shu -- 14.2.1. Design Basis / Razif Harun / Hassan J. / Michael K. Danquah / Lucy A. Arthur / Li J.S. Shu -- 14.2.2. Strain Selection / Razif Harun / Hassan J. / Michael K. Danquah / Lucy A. Arthur / Li J.S. Shu -- 14.2.3. Technology Selection / Razif Harun / Hassan J. / Michael K. Danquah / Lucy A. Arthur / Li J.S. Shu -- 14.2.4. Process Design / Razif Harun / Hassan J. / Michael K. Danquah / Lucy A. Arthur / Li J.S. Shu -- 14.3. Economic Analysis / Razif Harun / Hassan J. / Michael K. Danquah / Lucy A. Arthur / Li J.S. Shu -- 14.3.1. Capital Cost Estimates / Razif Harun / Hassan J. / Michael K. Danquah / Lucy A. Arthur / Li J.S. Shu -- 14.3.2. Major Equipment Cost (MEC) / Razif Harun / Hassan J. / Michael K. Danquah / Lucy A. Arthur / Li J.S. Shu -- 14.3.3. Fixed Capital Investments and Working Capital / Razif Harun / Hassan J. / Michael K. Danquah / Lucy A. Arthur / Li J.S. Shu -- 14.3.4. Operating Cost Estimates / Razif Harun / Hassan J. / Michael K. Danquah / Lucy A. Arthur / Li J.S. Shu -- 14.3.5. Cost of Ethanol Production / Razif Harun / Hassan J. / Michael K. Danquah / Lucy A. Arthur / Li J.S. Shu -- 14.3.6. Overall Production Cost / Razif Harun / Hassan J. / Michael K. Danquah / Lucy A. Arthur / Li J.S. Shu -- 14.3.7. Profitability / Razif Harun / Hassan J. / Michael K. Danquah / Lucy A. Arthur / Li J.S. Shu -- 14.4. Reduction of Overall Production Cost / Razif Harun / Hassan J. / Michael K. Danquah / Lucy A. Arthur / Li J.S. Shu -- 14.5. Conclusion / Razif Harun / Hassan J. / Michael K. Danquah / Lucy A. Arthur / Li J.S. Shu -- References / Razif Harun / Hassan J. / Michael K. Danquah / Lucy A. Arthur / Li J.S. Shu -- 15.1. Introduction / Azadeh Kermanshahi-pour / Paul T. Anastas / Julie B. Zimmerman -- 15.2. Microalgae Cultivation Systems / Azadeh Kermanshahi-pour / Paul T. Anastas / Julie B. Zimmerman -- 15.2.1. Outdoor Open Systems / Azadeh Kermanshahi-pour / Paul T. Anastas / Julie B. Zimmerman -- 15.2.2. Outdoor Enclosed Systems / Azadeh Kermanshahi-pour / Paul T. Anastas / Julie B. Zimmerman -- 15.2.3. Fermenter-Type Reactors / Paul T. Anastas / Julie B. Zimmerman / Azadeh Kermanshahi-pour -- 15.3. Lipids / Azadeh Kermanshahi-pour / Paul T. Anastas / Julie B. Zimmerman -- 15.3.1. Polyunsaturated Fatty Acids / Azadeh Kermanshahi-pour / Paul T. Anastas / Julie B. Zimmerman -- 15.3.2. Carotenoids / Azadeh Kermanshahi-pour / Paul T. Anastas / Julie B. Zimmerman -- 15.4. Carbohydrates / Azadeh Kermanshahi-pour / Paul T. Anastas / Julie B. Zimmerman -- 15.4.1. Polysaccharides / Azadeh Kermanshahi-pour / Paul T. Anastas / Julie B. Zimmerman -- 15.5. Protein / Azadeh Kermanshahi-pour / Paul T. Anastas / Julie B. Zimmerman -- 15.5.1. Phycobiliproteins / Azadeh Kermanshahi-pour / Paul T. Anastas / Julie B. Zimmerman -- 15.6. Process Integration / Azadeh Kermanshahi-pour / Paul T. Anastas / Julie B. Zimmerman -- 15.7. Conclusion / Azadeh Kermanshahi-pour / Paul T. Anastas / Julie B. Zimmerman -- References / Azadeh Kermanshahi-pour / Paul T. Anastas / Julie B. Zimmerman -- 16.1. Introduction / Ian M. O'Hara / Zhanying Zhang / William O.S. Doherty / Mark D. Harrison / Sagadevan G. Mundree / Philip A. Hobson -- 16.2. Nature of Lignocellulosic Biomass / Ian M. O'Hara / Zhanying Zhang / William O.S. Doherty / Mark D. Harrison / Sagadevan G. Mundree / Philip A. Hobson -- 16.2.1. Cellulose / Ian M. O'Hara / Zhanying Zhang / William O.S. Doherty / Mark D. Harrison / Sagadevan G. Mundree / Philip A. Hobson -- 16.2.2. Hemicellulose / Ian M. O'Hara / Zhanying Zhang / William O.S. Doherty / Mark D. Harrison / Sagadevan G. Mundree / Philip A. Hobson -- 16.2.3. Lignin / Ian M. O'Hara / Zhanying Zhang / William O.S. Doherty / Mark D. Harrison / Sagadevan G. Mundree / Philip A. Hobson -- 16.3. Feedstocks for Biomass Processing / Mark D. Harrison / Sagadevan G. Mundree / Philip A. Hobson / Ian M. O'Hara / Zhanying Zhang / William O.S. Doherty -- 16.3.1. Agricultural Residues / Ian M. O'Hara / Zhanying Zhang / William O.S. Doherty / Mark D. Harrison / Sagadevan G. Mundree / Philip A. Hobson -- 16.3.2. Forest Residues / Ian M. O'Hara / Zhanying Zhang / William O.S. Doherty / Mark D. Harrison / Sagadevan G. Mundree / Philip A. Hobson -- 16.4. Production of Fermentable Sugars from Biomass / Ian M. O'Hara / Zhanying Zhang / Philip A. Hobson / Mark D. Harrison / Sagadevan G. Mundree / William O.S. Doherty -- 16.4.1. Pretreatment of Biomass / Sagadevan G. Mundree / Mark D. Harrison / Philip A. Hobson / Ian M. O'Hara / Zhanying Zhang / William O.S. Doherty -- 16.4.2. Enzymatic Hydrolysis of Cellulose / Sagadevan G. Mundree / Mark D. Harrison / Philip A. Hobson / Zhanying Zhang / Ian M. O'Hara / William O.S. Doherty -- 16.4.3. Enzymatic Hydrolysis of Hemicellulose / Ian M. O'Hara / Zhanying Zhang / Philip A. Hobson / Mark D. Harrison / Sagadevan G. Mundree / William O.S. Doherty -- 16.4.4. Enzymatic Hydrolysis of Pretreated Biomass by Industrial Cellulase Mixtures / Ian M. O'Hara / Zhanying Zhang / Philip A. Hobson / Mark D. Harrison / Sagadevan G. Mundree / William O.S. Doherty -- 16.5. Thermochemical Conversion of Biomass to Fuels and Chemicals / Zhanying Zhang / Ian M. O'Hara / Philip A. Hobson / William O.S. Doherty / Sagadevan G. Mundree / Mark D. Harrison -- 16.5.1. Gasification / Sagadevan G. Mundree / Mark D. Harrison / Philip A. Hobson / Zhanying Zhang / Ian M. O'Hara / William O.S. Doherty -- 16.5.2. Pyrolysis / Sagadevan G. Mundree / Mark D. Harrison / Philip A. Hobson / Zhanying Zhang / Ian M. O'Hara / William O.S. Doherty -- 16.5.3. Liquefaction / Ian M. O'Hara / Zhanying Zhang / Philip A. Hobson / Mark D. Harrison / Sagadevan G. Mundree / William O.S. Doherty -- 16.6. Fuels and Chemicals from Biomass / Ian M. O'Hara / Zhanying Zhang / Sagadevan G. Mundree / Mark D. Harrison / Philip A. Hobson / William O.S. Doherty -- 16.7. Conclusion / Sagadevan G. Mundree / William O.S. Doherty / Ian M. O'Hara / Zhanying Zhang / Philip A. Hobson / Mark D. Harrison -- References / Ian M. O'Hara / Zhanying Zhang / Philip A. Hobson / Mark D. Harrison / Sagadevan G. Mundree / William O.S. Doherty
Summary This technical book explores current and future applications of solar power as an unlimited source of energy that earth receives every day. Photosynthetic organisms have learned to utilize this abundant source of energy by converting it into high-energy biochemical compounds. Inspired by the efficient conversion of solar energy into an electron flow, attempts have been made to construct artificial photosynthetic systems capable of establishing a charge separation state for generating electricity or driving chemical reactions. Another important aspect of photosynthesis is the CO2 fixation and the production of high energy compounds. Photosynthesis can produce biomass using solar energy while reducing the CO2 level in air. Biomass can be converted into biofuels such as biodiesel and bioethanol. Under certain conditions, photosynthetic organisms can also produce hydrogen gas which is one of the cleanest sources of energy
Bibliography Includes bibliographical references and index
Notes Print version record and CIP data provided by publisher
Subject Renewable energy sources.
Photosynthesis -- Industrial applications
TECHNOLOGY & ENGINEERING -- Mechanical.
Renewable energy sources
Form Electronic book
LC no. 2013013043
ISBN 9781118659755
1118659759
9781118659847
1118659848
9781118659830
111865983X
1118659899
9781118659892
1118160061
9781118160060
9781299939400
1299939406