Limit search to available items
Record 8 of 35
Previous Record Next Record
Book Cover
E-book

Title Engineered polymer nanocomposites for energy harvesting applications / edited by M.T. Rahul [and more]
Published Amsterdam, Netherlands : Elsevier, 2022

Copies

Description 1 online resource
Contents Front Cover -- Engineered Polymer Nanocomposites for Energy Harvesting Applications -- Copyright Page -- Contents -- List of contributors -- Preface -- 1 Recent advances in vinylidene fluoride copolymers and their applications as nanomaterials -- 1.1 Introduction -- 1.2 Different classes of ferroelectric polymers -- 1.3 PVDF and VDF copolymers and terpolymers -- 1.3.1 PVDF homopolymer -- 1.3.2 VDF co-/terpolymers -- 1.3.2.1 P(VDF-co-HFP) copolymers -- 1.3.2.2 P(VDF-co-CTFE) copolymers -- 1.3.2.3 P(VDF-co-trifluoroethylene) copolymers -- 1.3.2.4 P(VDF-co-2,3,3,3-tetrafluoropropene) copolymers -- 1.3.2.5 P(VDF-ter-TrFE-ter-CTFE) terpolymers -- 1.3.2.6 P(VDF-ter-TrFE-ter-CFE) terpolymers -- 1.3.2.7 Other P(VDF-ter-TrFE-ter-M) terpolymers -- 1.4 Properties of PVDF and VDF copolymers -- 1.4.1 Mechanical and thermal properties -- 1.4.2 Electrical properties -- 1.5 Applications -- 1.5.1 Sonars -- 1.5.2 Actuators and sensors -- 1.5.3 Others -- 1.6 Conclusion -- Acknowledgments -- References -- 2 Characterization methods used for the identification of ferroelectric beta phase of fluoropolymers -- 2.1 Introduction -- 2.2 Processing of beta phase using different methods -- 2.2.1 Melt method -- 2.2.2 Quenching method -- 2.2.3 Pressing and folding operation -- 2.2.4 Additives -- 2.3 Characterization techniques -- 2.3.1 Differential scanning calorimetry -- 2.3.1.1 Difference between poled and unpoled DSC curves -- 2.3.2 Fourier-transform infrared spectroscopy -- 2.3.2.1 Calculation of individual beta and gamma phase -- 2.3.3 X-ray diffraction -- 2.3.4 Ferroelectric hysteresis loop/PE loop -- 2.3.4.1 Ferroelasticity -- 2.3.5 Dielectric properties -- 2.4 Conclusion -- Conflict of interest -- References -- 3 Polymer/metal oxides nanocomposites-based piezoelectric energy-harvesters -- 3.1 Introduction -- 3.2 Polymer-based nanogenerators
3.2.1 Polyvinyldene fluoride-based piezoelectric nanogenerators -- 3.2.2 Polyvinyldene fluoride-trifluoroethylene/multiwalled carbon nanotubes-based piezoelectric nanogenerators -- 3.2.3 Polyvinylidene fluoride-hexafluoropropylene/multiwalled carbon nanotubes-based piezoelectric nanogenerator -- 3.2.4 Poly-l-lactic acid nanofiber-based piezoelectric nanogenerator -- 3.2.5 Nylon 11/cellulose nanocrystal-based piezoelectric nanogenerator -- 3.2.6 Cellulose-based energy generator -- 3.2.7 Gelatin nanofiber-based piezoelectric pressure sensor -- 3.3 Polymer-metal oxide nanocomposites-based piezoelectric energy harvesters -- 3.3.1 Lead zirconate titanate-polymer nanocomposites -- 3.3.2 Barium titanate-polymer nanocomposites -- 3.3.3 Zinc oxide-polymer nanocomposite -- 3.3.4 Lead magnesium niobate-lead titanate-polymer nanocomposites -- 3.3.5 Other metal oxide-polymer nanocomposites -- 3.4 Conclusion -- References -- 4 2D materials-polymer composites for developing piezoelectric energy-harvesting devices -- 4.1 Introduction -- 4.1.1 Energy-harvesting -- 4.1.2 Piezoelectricity -- 4.1.3 Piezoelectric materials -- 4.1.3.1 Piezoceramics -- 4.1.3.2 Piezo single crystals -- 4.1.3.3 Piezopolymers -- 4.1.4 Composites -- 4.1.4.1 Polymer-based composites -- 4.1.5 2-dimensional materials -- 4.2 Role of 2-dimensional materials in polymer composites for piezoelectric-based energy-harvesting devices -- 4.2.1 Common device configuration for piezoelectric energy-harvesting -- 4.2.2 2-dimensional-materials and polymer composites for piezoelectric energy-harvesting devices -- 4.3 Applications -- 4.4 Conclusion -- References -- 5 Non-fluorinated piezoelectric polymers and their composites for energy harvesting applications -- 5.1 Introduction -- 5.2 Piezoelectricity in semicrystalline polymers -- 5.3 Piezoelectricity in natural polymers
5.4 Piezoelectricity in amorphous polymers -- 5.5 Energy-harvesting applications -- 5.5.1 Polyamides -- 5.5.2 Poly(L-lactic acid) -- 5.5.3 Poly(caprolactone) -- 5.5.4 Poly(acrylonitrile) -- 5.5.5 Cellulose -- 5.5.6 Chitin/chitosan -- 5.5.7 Collagen -- 5.5.8 Silk -- 5.5.9 Other polymers -- 5.6 Summary and future outlook -- References -- 6 Polysaccharide-based nanocomposites for energy-harvesting nanogenerators -- 6.1 Introduction -- 6.2 Piezoelectric nanogenerators -- 6.2.1 Operation modes -- 6.3 Triboelectric nanogenerators -- 6.3.1 Working modes of triboelectric nanogenerators -- 6.3.1.1 Contact-separation mode -- 6.3.1.2 Lateral sliding mode -- 6.3.1.3 Free-standing mode -- 6.3.1.4 Single-electrode mode -- 6.4 Nanocellulose-based energy-harvesting nanogenerators -- 6.4.1 Bacterial cellulose-based triboelectric nanogenerators -- 6.4.2 Bacterial cellulose-based piezoelectric nanogenerators -- 6.4.3 Nanocellulose-based hybrid piezoelectric nanogenerator-triboelectric nanogenerator -- 6.5 Chitin and chitosan-based energy-harvesting nanogenerators -- 6.5.1 Chitin-based triboelectric nanogenerators -- 6.5.2 Chitin based piezoelectric nanogenerators -- 6.6 Porous nanocellulose/chitosan aerogel film-based triboelectric nanogenerators -- 6.7 Miscellaneous polysaccharides-based energy-harvesting nanogenerators -- 6.7.1 Pullulan-based triboelectric nanogenerator -- 6.7.2 Sodium alginate based piezoelectric nanogenerators -- 6.7.3 Starch-based triboelectric nanogenerators -- 6.8 Conclusion and future outlook -- References -- 7 Polymer-based composite materials for triboelectric energy harvesting -- 7.1 Introduction -- 7.2 Material selection -- 7.2.1 Triboelectric series -- 7.2.2 Triboelectrification -- 7.2.3 Material transfer mechanism and polymer electrets -- 7.3 Polymer and Composite polymer materials
7.4 Composite polymer-based triboelectric nanogenerator applications -- 7.5 Conclusion -- Acknowledgment -- References -- 8 Magnetoelectric polymer nanocomposites for energy harvesting -- 8.1 Introduction -- 8.2 Magnetoelectric materials -- 8.3 Materials -- 8.3.1 Magnetic/magnetostrictive materials -- 8.3.2 Ferroelectric materials -- 8.3.3 Ferroelectric polymers -- 8.3.3.1 Polyvinylidene fluoride and its copolymers -- 8.4 Types of polymer-based magnetoelectric composites -- 8.5 Fabrication methods of polymer-based multiferroic composites -- 8.5.1 Solvent casting -- 8.5.2 Electrospinning -- 8.6 Energy harvesting aspects of magnetoelectric material -- 8.7 Conclusion -- References -- 9 Hybrid composites with shape memory alloys and piezoelectric thin layers -- 9.1 Introduction -- 9.2 Multiphysics behavior modeling and characterization -- 9.2.1 Modeling of the shape memory alloys thermomechanical behavior -- 9.2.2 Modeling of the ferroelectric and ferroelastic behaviors of piezoelectric materials -- 9.2.3 Modeling of the thermoelectromechanical response of hybrid shape memory alloys/piezo composites -- 9.3 Multilayer manufacturing and characterization -- 9.3.1 First devices -- 9.3.2 Processing of the shape memory alloys/poly(vinylidene fluoride-trifluoroethylene) hybrid composite -- 9.4 Finite element analysis of shape memory alloys/piezo composite response for energy harvesting -- 9.5 Harvester manufacturing, instrumentation, and performance analysis -- 9.5.1 Energy harvesting from hybrid composite (shape memory alloys/piezo) -- 9.5.2 Thermal-mechanical-electrical energy harvesting -- 9.5.3 Electrothermomechanical characterization bench -- 9.5.4 Electronic circuits for piezoelectric energy harvesting -- 9.6 Conclusion -- References -- 10 Designing piezo- and pyroelectric energy harvesters -- 10.1 Introduction -- 10.2 Piezoelectric nanogenerator
10.2.1 Inorganic piezoelectric materials -- 10.2.1.1 Zinc oxide nanowires-based piezoelectric nanogenerators -- 10.2.1.2 Polycrystalline lead zirconate titanate-based piezoelectric nanogenerators -- 10.2.1.3 Composite-based materials-based piezoelectric nanogenerators -- 10.2.2 Organic piezoelectric materials -- 10.2.3 Biodegradable materials-based piezoelectric nanogenerators -- 10.3 Pyroelectric nanogenerator -- 10.3.1 The progress of pyroelectric nanogenerator -- 10.4 Coupled piezo- and pyroelectric nanogenerator -- 10.5 Conclusion and future outlook -- Acknowledgment -- Conflicts of interest -- References -- Index -- Back Cover
Notes Includes index
Print version record
Subject Energy harvesting.
Polymer engineering.
Polymeric composites.
Nanocomposites (Materials)
polymer science.
Energy harvesting
Nanocomposites (Materials)
Polymer engineering
Polymeric composites
Form Electronic book
Author Rahul, M. T
ISBN 9780323853316
0323853315