The ability of some cells or tissues to survive lethal doses of IONIZING RADIATION. Tolerance depends on the species, cell type, and physical and chemical variables, including RADIATION-PROTECTIVE AGENTS and RADIATION-SENSITIZING AGENTS
Radiation -- Toxicology -- Congresses. : Radiation protection in mining and milling of uranium and thorium : proceedings of a symposium organised by the International Labour Office and the French Atomic Energy Commission, in co-operation with the World Health Organization and the International Atomic Energy Agency and held in Bordeaux (France), 9-11 September 1974
That portion of the electromagnetic spectrum immediately below the visible range and extending into the x-ray frequencies. The longer wavelengths (near-UV or biotic or vital rays) are necessary for the endogenous synthesis of vitamin D and are also called antirachitic rays; the shorter, ionizing wavelengths (far-UV or abiotic or extravital rays) are viricidal, bactericidal, mutagenic, and carcinogenic and are used as disinfectants
That portion of the electromagnetic spectrum immediately below the visible range and extending into the x-ray frequencies. The longer wavelengths (near-UV or biotic or vital rays) are necessary for the endogenous synthesis of vitamin D and are also called antirachitic rays; the shorter, ionizing wavelengths (far-UV or abiotic or extravital rays) are viricidal, bactericidal, mutagenic, and carcinogenic and are used as disinfectants
Radiation victims -- Kazakhstan -- Semeĭ : The polygon / Mushroom Cloud Productions ; i2i Productions ; a film by Kimberley Hawryluk ; produced and directed by Kimberley Hawryluk & Adam Schomer ; written by Adam Schomer & Trent Atkinson
Radiation workers -- Diseases -- Prevention -- Congresses : Occupational radiation protection : proceedings of the international conference organized by the British Nuclear Energy Society and held in Guernsey on 29 April - 3 May 1991
Penetrating electromagnetic radiation emitted when the inner orbital electrons of an atom are excited and release radiant energy. X-ray wavelengths range from 1 pm to 10 nm. Hard X-rays are the higher energy, shorter wavelength X-rays. Soft x-rays or Grenz rays are less energetic and longer in wavelength. The short wavelength end of the X-ray spectrum overlaps the GAMMA RAYS wavelength range. The distinction between gamma rays and X-rays is based on their radiation source
Emission or propagation of acoustic waves (SOUND), ELECTROMAGNETIC ENERGY waves (such as LIGHT; RADIO WAVES; GAMMA RAYS; or X-RAYS), or a stream of subatomic particles (such as ELECTRONS; NEUTRONS; PROTONS; or ALPHA PARTICLES)
High-energy radiation or particles from extraterrestrial space that strike the earth, its atmosphere, or spacecraft and may create secondary radiation as a result of collisions with the atmosphere or spacecraft
Penetrating, high-energy electromagnetic radiation emitted from atomic nuclei during NUCLEAR DECAY. The range of wavelengths of emitted radiation is between 0.1 - 100 pm which overlaps the shorter, more energetic hard X-RAYS wavelengths. The distinction between gamma rays and X-rays is based on their radiation source
ELECTROMAGNETIC RADIATION or particle radiation (high energy ELEMENTARY PARTICLES) capable of directly or indirectly producing IONS in its passage through matter. The wavelengths of ionizing electromagnetic radiation are equal to or smaller than those of short (far) ultraviolet radiation and include gamma and X-rays
ELECTROMAGNETIC RADIATION or sonic radiation (SOUND WAVES) which does not produce IONS in matter through which it passes. The wavelengths of non-ionizing electromagentic radiation are generally longer than those of far ultraviolet radiation and range through the longest RADIO WAVES
ELECTROMAGNETIC RADIATION or sonic radiation (SOUND WAVES) which does not produce IONS in matter through which it passes. The wavelengths of non-ionizing electromagentic radiation are generally longer than those of far ultraviolet radiation and range through the longest RADIO WAVES
A type of non-ionizing radiation in which energy is transmitted through solid, liquid, or gas as compression waves. Sound (acoustic or sonic) radiation with frequencies above the audible range is classified as ultrasonic. Sound radiation below the audible range is classified as infrasonic --consider also terms at PHON-
Non-ionizing electromagnetic energy in the frequency range of 100 gigahertz to 10 terahertz which spans from the mid-INFRARED RAYS frequency to the high-frequency edge of the MICROWAVES band