Limit search to available items
Book Cover
E-book
Author Youssef, Ahmed A.

Title Nanometer CMOS RFICs for mobile TV applications / by Ahmed A. Youssef, Jim Haslett
Published Dordrecht ; London : Springer, 2010

Copies

Description 1 online resource (xv, 158 pages) : illustrations
Series Analog circuits and signal processing series
Analog circuits and signal processing series.
Contents Preface. List of Symbols and Abbreviation -- One: Introduction and Overview. 1.1 Mobile TV Architectures. 1.2 DVB-H Mobile TV System Definitions. 1.3 Scope of This Book -- Two: Wideband CMOS LNA Design Techniques. 2.1 Dynamic Range Limits in MOSFETs. 2.2 Traditional CMOS LNA Topologies. 2.3 Recent Trends in Wideband CMOS LNAs. 2.4 Techniques to Improve the Wideband LNA Dynamic Range. 2.5 Chapter Summary -- Three: Nanometer CMOS LNAs for Mobile TV Receivers. 3.1 Requirements of the LNA in Mobile TV Receivers. 3.2 A 65 nm CMOS Wideband LNA Prototype. 3.3 Experimental Results. 3.4 Chapter Summary -- Four: RF Attenuator Linearization Circuits. 4.1 The Necessity of RF Automatic Gain Control. 4.2 RF Gain Control System Analysis. 4.3 Highly Linear RF Front-End Architectures. 4.4 Design of the Binary Weighted RF Attenuator. 4.5 Practical Considerations. 4.6 A 65 nm CMOS RF Passive Attenuator. 4.7 Chapter Summary -- Five: Wide Dynamic Range Mobile TV Front-End Architecture. 5.1 Mobile TV Front-End with Automatic Gain Control. 5.2 A 65 nm CMOS RF Front-End Prototype. 5.3 Chapter Summary -- Six: Summary and Conclusions. 6.1 Summary and Conclusions. 6.2 Further Research Areas -- References. Index. Author Biographies
Summary The RF front-end is the most fundamental building block of any wireless system. Nanometer CMOS RFICs for Mobile TV Applications brings together what IC design engineers need to know for the development of low-cost, wide-dynamic range RF front-ends for today's fastest growing communication markets. Drawing on their experience from both industry and academia, the authors use the emerging DVB-H mobile TV standard to provide readers with the step-by-step design progression of the described nanometer CMOS RFICs. Nanometer CMOS RFICs for Mobile TV Applications focuses on how to break the trade-off between power consumption and performance (linearity and noise figure) by optimizing the mobile TV front-end dynamic range in three hierarchical levels: the intrinsic MOSFET level, the circuit level, and the architectural level. It begins by discussing the fundamental concepts of MOSFET dynamic range, including nonlinearity and noise. It then moves to the circuit level introducing the challenges associated with designing wide-dynamic range, variable-gain, broadband low-noise amplifiers (LNAs). The book gives a detailed analysis of a new noise-canceling technique that helps CMOS LNAs achieve a sub - 2 dB wideband noise figure. Lastly, the book deals with the front-end dynamic range optimization process from the systems perspective by introducing the active and passive automatic gain control (AGC) mechanism. By describing in detail the physical realization of several 65 nm CMOS test chips, this book uncovers the practical challenges inherent in using nanometer CMOS technologies for RF circuit design and provides the solutions needed to overcome those challenges
Analysis biofysica
biophysics
spectroscopie
spectroscopy
microscopie
microscopy
engineering
Engineering (General)
Techniek (algemeen)
Bibliography Includes bibliographical references and index
Notes English
Print version record
Subject Radio frequency integrated circuits.
Metal oxide semiconductors, Complementary.
Metal oxide semiconductor field-effect transistors.
Mobile television.
Automatic gain control.
Signal processing -- Quality control
TECHNOLOGY & ENGINEERING -- Television & Video.
Ingénierie.
Radio frequency integrated circuits
Mobile television
Metal oxide semiconductors, Complementary
Automatic gain control
Metal oxide semiconductor field-effect transistors
Genre/Form dissertations.
Academic theses
Academic theses.
Thèses et écrits académiques.
Form Electronic book
Author Haslett, James.
LC no. 2010922879
ISBN 9789048186044
9048186048
9781283002615
1283002612