Limit search to available items
Record 29 of 116
Previous Record Next Record
Book Cover
E-book
Author Kroupa, Věnceslav F., 1923-

Title Frequency stability : introduction and applications / Věnceslav F. Kroupa
Published Piscataway, NJ : IEEE Press ; Hoboken, N.J. : Wiley, ©2012
Online access available from:
Wiley Online Books    View Resource Record  

Copies

Description 1 online resource (xxvii, 302 pages) : illustrations
Series IEEE Press series on digital and mobile communication ; 15
IEEE series on mobile & digital communication.
Contents 880-01 Noise and Frequency Stability -- Noise in Resonators and Oscillators -- Noise Properties of Practical Oscillators -- Noise of Building Elements -- Time Domain Measurements -- Phase-Locked Loops
880-01/(S Machine generated contents note: 1. Noise and Frequency Stability -- 1.1. White Noise -- 1.1.1. Thermal Noise -- 1.1.2. Shot Noise -- 1.2. Colored Noises -- 1.2.1. Mathematical Models of 1/fα Processes -- 1.2.2. 1/f Noise (Flicker Noise) -- 1.2.3. 1/f2, 1/f3, and 1/f4 Noises -- 1.3. Small and Band Limited Perturbations of Sinusoidal Signals -- 1.3.1. Superposition of One Large and a Set of Small Signals -- 1.3.2. Narrow Bandwidth Noise -- 1.4. Statistical Approach -- 1.4.1. Probability -- 1.4.2. Random Variables, Distribution Function, Density of Probability -- 1.4.2.1. Uniform Distribution -- 1.4.2.2. Binomial Distribution -- 1.4.2.3. Poisson Distribution -- 1.4.2.4. Gaussian Distribution -- 1.4.3. Characteristic Functions -- 1.4.3.1. Characteristic Function of the Binomial Distribution -- 1.4.3.2. Characteristic Function of the Gaussian Distribution -- 1.4.3.3. Characteristic Function of the Sum of Distributions -- 1.4.4. Stochastic Processes -- 1.4.4.1. Distribution Functions and Probability Density -- 1.4.4.2. Stationary Stochastic Processes -- 1.4.4.3. Random Walk -- 1.4.5. Ergodicity -- 1.5. Power Spectra of Stochastic Processes -- 1.5.1. Brownian Movement -- 1.5.2. Fractional Integration (Wiener--Levy Process) -- 1.5.2.1. Power Spectra with Fractional Integration Proportional to [√]t -- 1.5.2.2. Power Spectra with Fractional Integration Proportional to 1/[√]t -- References -- Appendix -- 2. Noise in Resonators and Oscillators -- 2.1. Noise Generated in Resonators -- 2.1.1. White Frequency Noise (WFN) Generated in Resonators -- 2.1.2. Flicker Frequency Noise Generated in Resonators -- 2.1.3. Random Walk of the Resonant Frequency -- 2.1.4. Spurious Frequency Modulation Generated in Resonators -- 2.1.5. Aging and Drift of the Frequency of Resonators -- 2.2. Phase Noise of Resonators: Experimental Results -- 2.2.1. Flicker Phase Noise in Crystal Resonators: Experimental Results -- 2.2.2. Random Walk of the Frequency Noise Generated in Resonators -- 2.3. Noise in Oscillators -- 2.3.1. Analogue Arrangement -- 2.3.2. Sampling Arrangement -- 2.3.3. Evaluation of the Oscillator Output Phase Noise -- 2.3.4. Evaluation of the Oscillator Output Fractional Frequency Noise -- 2.3.5. Asymptotic Evaluation of the Fractional Frequency Noise Characteristics -- 2.3.6. Higher Order Noise Terms -- 2.4. Leeson Model -- References -- 3. Noise Properties of Practical Oscillators -- 3.1. Precision Oscillators -- 3.1.1. Quartz Crystal Oscillators -- 3.1.2. Precision Microwave Oscillators -- 3.1.2.1. Microwave Self-Excited Oscillators -- 3.1.2.2. Stabilized Microwave Local Oscillators -- 3.1.2.3. Interferometric Stabilization of Microwave Oscillators -- 3.1.2.4. Microwave Oscillators Stabilized with Ferrite Circulators -- 3.1.2.5. Pound Stabilization -- 3.1.3. Cryogenic Stabilized Oscillators -- 3.1.3.1. Quartz Crystal Oscillators -- 3.1.3.2. Oscillators with Ceramic Resonators -- 3.1.3.3. Cooled Sapphire Oscillators -- 3.1.3.4. Frequency Stability of Sapphire Oscillators -- 3.1.4. Optoelectronic Oscillators -- 3.1.4.1. Basic Arrangement -- 3.1.4.2. Noise Properties of OEOs -- 3.1.4.3. More Loops Arrangement -- 3.1.4.4. Synchronized Opto-Electronic Oscillators -- 3.2. Practical Oscillators -- 3.2.1. LC Oscillators -- 3.2.2. Microwave LC Oscillators -- 3.2.3. Noise in Microwave LC Oscillators -- 3.2.3.1. White Noise Constant -- 3.2.3.2. Flicker Noise Constant -- 3.2.3.3. Random Walk Noise Constant -- 3.2.3.4. Expected Output Phase Noise of the Microwave LC Oscillators -- 3.2.4. Varactor Tuning of Microwave LC Oscillators -- 3.2.5. Figure of Merit of Microwave Oscillators -- 3.3. Practical RC Oscillators -- 3.3.1. Relaxation Oscillators -- 3.3.2. Ring Oscillators -- 3.3.2.1. Noise in Ring Oscillators -- 3.3.2.2. Figure of Merit of Ring Oscillators -- References -- 4. Noise of Building Elements -- 4.1. Resistors -- 4.1.1. Resistors: 1/f Noise -- 4.2. Inductances -- 4.2.1. Inductances: White Noise -- 4.2.2. Inductance: 1/f Noise -- 4.3. Capacitance -- 4.3.1. Capacitance: White Noise -- 4.3.2. Capacitance: 1/f Noise -- 4.4. Semiconductors -- 4.4.1. Shot Noise in Diodes -- 4.4.2. Shot Noise in Bipolar Transistors -- 4.4.3. White Noise in Field-Effect Transistors -- 4.4.4. Flicker (1/f) Noise in Semiconductors -- 4.5. Amplifiers -- 4.5.1. Linear Two Ports Representation -- 4.5.2. Feedback in Amplifiers -- 4.5.3. Voltage and Power Gains -- 4.5.4. Maximum Operating Frequency -- 4.5.5. Noise Figure -- 4.5.6. (1/f) Noise Up-Conversion -- 4.6. Mixers -- 4.6.1. Multiplicative Mixers -- 4.6.2. Switching Or Balanced Mixers -- 4.6.3. Ring- or Double-Balanced Mixers -- 4.6.4. Current Commutating CMOS Mixers -- 4.6.5. Noise Sources in Mixers -- 4.6.5.1. Noise in Diode or Switching Mixers -- 4.6.5.2. Noise in Current Commutating CMOS Mixers -- 4.6.5.3. Aliasing of the Switching Noise -- 4.6.5.4. Flicker or 1/f Noise -- 4.6.6. Noise Figure of Current Commutating CMOS Mixers -- 4.6.7. Two-Tone Performance of Current Commutating CMOS Mixers -- 4.7. Frequency Dividers -- 4.7.1. Digital Frequency Dividers -- 4.7.1.1. Dual Modulus Dividers -- 4.7.1.2. Fractional-N Dividers -- 4.7.2. Spurious Signals in Variable-Ratio Digital Frequency Dividers -- 4.7.3. Noise in Digital Frequency Dividers -- 4.7.4. Injection-Locked Frequency Dividers -- 4.7.5. Regenerative Frequency Dividers -- 4.7.5.1. Spurious Signals in the Regenerative Frequency Dividers -- 4.7.5.2. Noise Sources in Regenerative Frequency Dividers -- 4.8. Frequency Multipliers -- References -- 5. Time Domain Measurements -- 5.1. Basic Properties of Sample Variances -- 5.2. Transfer Functions of Several Time Domain Frequency Stability Measures -- 5.2.1. Two-Sample (Allan) Variance -- 5.2.2. Evaluation of the Transfer Functions -- 5.2.2.1. White Phase Noise -- 5.2.2.2. Flicker Phase Noise -- 5.2.2.3. White Frequency Noise -- 5.2.2.4. Flicker Frequency Noise -- 5.2.2.5. Random Walk Frequency Noise -- 5.2.2.6. Aging -- 5.2.2.7. Sinusoidal Frequency Modulation -- 5.2.3. Piecewise Property of the Allan Variance -- 5.2.4. Confidence Interval -- 5.2.5. More Sample Variances -- 5.2.6. Modified Allan Variance -- 5.2.6.1. White Phase Noise -- 5.2.6.2. Flicker Phase Noise -- 5.2.6.3. White Frequency Noise -- 5.2.6.4. Flicker Frequency Noise -- 5.2.6.5. Random Walk (RW) -- 5.2.6.6. Relation Between Allan Variance and the Modified Allan Variance -- 5.2.7. Triangular Variance -- 5.3. Time Jitter -- 5.3.1. Types of the Time Jitter and Defining Units -- 5.3.1.1. Period Jitter -- 5.3.1.2. Cycle-to-Cycle Jitter -- 5.3.1.3. Peak-to-Peak Jitter -- 5.3.1.4. Time Interval Error -- 5.3.1.5. Jitter in the Unit Interval -- 5.3.1.6. Jitter in Units of Time -- 5.3.2. Probability Density of the Time Error -- 5.3.3. Bit Error Ratio (BER) -- 5.3.4. Eye Diagrams -- 5.3.5. Histograms -- 5.3.6. Separation of the Random and Deterministic Jitter -- 5.3.7. Time Jitter Evaluation From PSD Noise Characteristics -- 5.3.7.1. Time Jitter with Spurious Signals -- 5.3.8. Time Jitter Evaluation from the Time Domain Measurements -- 5.3.8.1. White Phase Noise -- 5.3.8.2. Flicker Phase Noise -- 5.3.8.3. White Frequency Noise -- 5.3.8.4. Flicker Frequency Noise -- 5.3.8.5. Random Walk of Frequency -- 5.3.9. Correspondence between Time Jitter Measurements -- 5.3.9.1. Correspondence between Simple Time Jitter and Allan Variances -- References -- 6. Phase-Locked Loops -- 6.1. PLL Basic -- 6.1.1. Loop Gain and the Transfer Functions -- 6.1.2. Loop Filter -- 6.1.3. Voltage-Controlled Oscillator Gain -- 6.1.4. Open-Loop Gain -- 6.1.5. Order and Type of the PLL -- 6.2. PLL Design -- 6.2.1. Natural Frequency and Damping Factor -- 6.2.2. Normalized Frequency -- 6.2.3. PLL Band Pass -- 6.2.4. Higher Order Loops -- 6.2.5. Third-Order Loops -- 6.3. Stability of the PLL -- 6.3.1. Bode Plots -- 6.3.2. Root-Locus Method -- 6.4. Tracking -- 6.4.1. Transients in PLL -- 6.4.2. Laplace Transforms of Typical Step Errors -- 6.4.2.1. Phase Steps: First-Order Loop -- 6.4.2.2. Phase Steps: Second-Order Loop -- 6.4.2.3. Frequency Steps: Second-Order Loop -- 6.4.2.4. Frequency Ramps -- 6.5. Working Ranges of PLL -- 6.5.1. Hold-in Range -- 6.5.2. Pull-in Range -- 6.5.3. False Locking -- 6.5.4. Lock-in Range -- 6.5.5. Pull-out Frequency -- 6.5.6. Lock-in Time -- 6.6. Digital PLL -- 6.6.1. Phase Detectors -- 6.6.2. Phase Frequency Detectors -- 6.6.3. Loop Filter Impedance -- 6.6.4. Second-Order Digital Loops -- 6.6.5. Third-Order Digital Loops -- 6.6.6. Fourth-Order Digital Loops -- 6.7. PLL Phase Noise -- 6.7.1. Reference Generator Noise -- 6.7.2. Voltage-Controlled Oscillator Noise -- 6.7.3. Phase Noise of the Charge Pump -- 6.7.4. Loop Filter Noise -- 6.7.5. Feedback-Divider Noise -- 6.7.6. PLL Output Noise -- 6.8. PLL Time Jitter -- 6.9. Spurious Signals -- 6.9.1. Spurious Signals of the First Type -- 6.9.2. Spurious Signals of the Second Type -- 6.10. Synchronized Oscillators -- 6.10.1. Principles of Injection Locking -- 6.10.2. Noise Properties of Synchronized Oscillators -- 6.10.3. Noise Properties of Oscillators Synchronized On Harmonics -- 6.10.3.1. Frequency Multiplication -- 6.10.3.2. Frequency Division -- References
Summary "For wireless communication engineers, it is important to have solid fundamental knowledge of noise and how to minimize it by stabilizing the incoming/outgoing waves. This introductory text of frequency stability offers discussion of the noise from the practical and theoretical points of view, proceeding with investigation of frequency and time fluctuations in resonators, and continue with stability of both of standard and practical microwave oscillators. Finally, the author discusses noise properties of building circuit blocks introducing a chapter on time domain properties and their relations with noise spectral densities. A special chapter is dedicated to the design and properties of the Phase Locked Loops. They are very important for frequency synthesizers which influence every day communications of millions and millions of people"-- Provided by publisher
Bibliography Includes bibliographical references and index
Notes Print version record
Subject Oscillators, Electric -- Design and construction
Frequency stability.
TECHNOLOGY & ENGINEERING -- Electronics -- Digital.
TECHNOLOGY & ENGINEERING -- Microwaves.
Frequency stability
Oscillators, Electric -- Design and construction
Form Electronic book
ISBN 9781118310144
1118310144
1118310101
9781118310106
9781283941297
1283941295