Microscopy of specimens stained with fluorescent dye (usually fluorescein isothiocyanate) or of naturally fluorescent materials, which emit light when exposed to ultraviolet or blue light. Immunofluorescence microscopy utilizes antibodies that are labeled with fluorescent dye
Fluorescence microscopy -- Data processing : Digital information methods of polarization, Mueller-Matrix and fluorescent microscopy : differential diagnosis of aseptic and septic loosening of artificial hip endoprosthesis cups / V. L. Vasyuk, Andriy V. Kalashnikov, Victor V. Protsyuk, Yu. A. Ushenko, Alexander V. Dubolazov, A. G. Ushenko, Jun Zheng
2023
1
Fluorescence microscopy. : Super Resolution Optical Imaging and Microscopy Methods, Algorithms, and Applications
Fluorescence microscopy utilizing multiple low-energy photons to produce the excitation event of the fluorophore (endogenous fluorescent molecules in living tissues or FLUORESCENT DYES). Multiphoton microscopes have a simplified optical path in the emission side due to the lack of an emission pinhole, which is necessary with normal confocal microscopes. Ultimately this allows spatial isolation of the excitation event, enabling deeper imaging into optically thick tissue, while restricting photobleaching and phototoxicity to the area being imaged
Visualization of a vascular system after intravenous injection of a fluorescein solution. The images may be photographed or televised. It is used especially in studying the retinal and uveal vasculature
The spectrometric analysis of fluorescent X-RAYS, i.e. X-rays emitted after bombarding matter with high energy particles such as PROTONS; ELECTRONS; or higher energy X-rays. Identification of ELEMENTS by this technique is based on the specific type of X-rays that are emitted which are characteristic of the specific elements in the material being analyzed. The characteristic X-rays are distinguished and/or quantified by either wavelength dispersive or energy dispersive methods
The spectrometric analysis of fluorescent X-RAYS, i.e. X-rays emitted after bombarding matter with high energy particles such as PROTONS; ELECTRONS; or higher energy X-rays. Identification of ELEMENTS by this technique is based on the specific type of X-rays that are emitted which are characteristic of the specific elements in the material being analyzed. The characteristic X-rays are distinguished and/or quantified by either wavelength dispersive or energy dispersive methods
Agents that emit light after excitation by light. The wave length of the emitted light is usually longer than that of the incident light. Fluorochromes are substances that cause fluorescence in other substances, i.e., dyes used to mark or label other compounds with fluorescent tags
A form of fluorescent antibody technique utilizing a fluorochrome conjugated to an antibody, which is added directly to a tissue or cell suspension for the detection of a specific antigen. (Bennington, Saunders Dictionary & Encyclopedia of Laboratory Medicine and Technology, 1984)
A form of fluorescent antibody technique commonly used to detect serum antibodies and immune complexes in tissues and microorganisms in specimens from patients with infectious diseases. The technique involves formation of an antigen-antibody complex which is labeled with fluorescein-conjugated anti-immunoglobulin antibody. (From Bennington, Saunders Dictionary & Encyclopedia of Laboratory Medicine and Technology, 1984)
1
Fluorescent antibody technique : Cell cycle control and dysregulation protocols : cyclins, cyclin-dependent kinases, and other factors / edited by Antonio Giordano, Gaetano Romano
Autoantibodies directed against various nuclear antigens including DNA, RNA, histones, acidic nuclear proteins, or complexes of these molecular elements. Antinuclear antibodies are found in systemic autoimmune diseases including systemic lupus erythematosus, Sjogren's syndrome, scleroderma, polymyositis, and mixed connective tissue disease