Limit search to available items
Book Cover
E-book
Author Kleinstreuer, C

Title Microfluidics and Nanofluidics : Theory and Selected Applications
Published Chichester : Wiley, 2014
©2014

Copies

Description 1 online resource (456 pages)
Contents Machine generated contents note: pt. A REVIEW OF ESSENTIALS IN MACROFLUIDICS -- ch. 1 Theory -- 1.1. Introduction and Overview -- 1.2. Definitions and Concepts -- 1.2.1. Definitions -- 1.2.2. Flow Field Description -- 1.2.3. Flow Field Categorization -- 1.2.4. Thermodynamic Properties and Constitutive Equations -- 1.3. Conservation Laws -- 1.3.1. Derivation Approaches -- 1.3.2. Reynolds Transport Theorem -- 1.3.2.1. Fluid Mass Conservation in Integral Form -- 1.3.2.2. Momentum Conservation in Integral Form -- 1.3.2.3. Conservation Laws of Energy and Species Mass -- 1.3.3. Conservation Equations in Differential Form -- 1.3.3.1. Fluid Mass Conservation -- 1.3.3.2. Linear Momentum Conservation -- 1.3.3.3. Reduced Forms of the Momentum Equation -- 1.3.3.4. Energy and Species Mass Conservation -- 1.3.4. Entropy Generation Analysis -- 1.4. Homework Assignments -- 1.4.1. Physical Insight -- 1.4.2. Text Problems -- ch. 2 Applications -- 2.1. Internal Fluid Flow -- 2.1.1. Problem-Solving Steps -- 2.1.2. Sample Solutions of the Reduced Navier-Stokes Equations -- 2.2. Porous Medium Flow -- 2.3. Mixture Flows -- 2.3.1. Introduction -- 2.3.2. Modeling Approaches -- 2.3.3. Homogeneous Flow Equations -- 2.3.4. Non-Newtonian Fluid Flow -- 2.3.5. Particle Transport -- 2.4. Heat Transfer -- 2.4.1. Forced Convection Heat Transfer -- 2.4.2. Convection Heat Transfer Coefficient -- 2.5. Convection-Diffusion Mass Transfer -- 2.5.1. Modeling Approaches -- 2.5.2. Compartmental Modeling -- 2.6. Homework Assignments -- 2.6.1. Definitions, Concepts, and Physical Insight -- 2.6.2. Text Problem -- 2.6.3. Homework Sets -- 2.6.3.1. Homework Set Ia -- 2.6.3.2. Homework Set Ib -- 2.6.3.3. Homework Set IIa -- 2.6.3.4. Homework Set lIb -- References (Part A) -- pt. B MICROFLUIDICS -- ch. 3 Microchannel Flow Theory -- 3.1. Introduction -- 3.1.1. Microfluidic System Components -- 3.1.2. Microfluidic System Integration -- 3.1.3. Microfluidic System Challenges -- 3.2. Basic Concepts and Limitations -- 3.2.1. Scaling Laws -- 3.2.2. Fluid Properties and Surface Tension Effects -- 3.2.3. Wall Slip Velocity and Temperature Jump -- 3.2.4. Electrokinetic Phenomena -- 3.2.4.1. Electroosmosis -- 3.2.4.2. Electrostatics -- 3.2.4.3. Electrophoresis -- 3.2.4.4. Nernst-Planck Equation -- 3.2.5. Magnetohydrodynamics -- 3.3. Homework Assignments -- 3.3.1. Physical Insight -- 3.3.2. Text Problems -- ch. 4 Applications in Microfluidics -- 4.1. Introduction -- 4.2. Micropumps and Microchannel Flow -- 4.2.1. Micropumps -- 4.2.2. Liquid Flow in Microchannels -- 4.2.3. Gas Flow in Microchannels -- 4.3. Micromixing -- 4.4. Laboratory-on-a-Chip Devices -- 4.4.1. LoC Processing Steps -- 4.4.2. LoC Applications -- 4.5. Homework Assignments and Course Projects -- 4.5.1. Text-related Questions and Tasks -- 4.5.2. Set-Up for Course Projects (CPs) -- References (Part B) -- pt. C NANOFLUIDICS -- ch. 5 Fluid Flow and Nanofluid Flow in Nanoconduits -- 5.1. Introduction -- 5.1.1. Overview -- 5.1.2. Nanostructures -- 5.1.3. Nanothermodynamics -- 5.2. Liquid Flow in Nanoconduits -- 5.2.1. Introduction and Overview -- 5.2.2. Nontraditional Simulation Methods -- 5.2.3. Summary of Nanoscale Phenomena and Descriptive Equations -- 5.2.4. Nanochannel Flow Examples -- 5.3. Rarefied Gas Flow in Nanochannels -- 5.3.1. Overview -- 5.3.2. Nanochannel Flow Examples -- 5.4. Homework Assignments and Course Projects -- 5.4.1. Text-Related Questions and Tasks -- 5.4.2. Set-Up for Course Projects -- ch. 6 Applications in Nanofluidics -- 6.1. Introduction -- 6.2. Nanoparticle Fabrication -- 6.2.1. Metals and Metal Oxides for Cooling -- 6.2.2. Drug Carriers in Nanomedicine -- 6.3. Forced Convection Cooling with Nanofluids -- 6.3.1. Nanofluid Properties -- 6.3.2. Thermal Nanofluid Flow -- 6.3.3. Friction Factor and Pressure Drop Results -- 6.3.4. Convective Heat Transfer -- 6.4. Nanodrug Delivery -- 6.4.1. Types of Drug-Loaded Nanoparticles -- 6.4.2. Mechanisms of Nanodrug Targeting -- 6.5. Homework Assignments and Course Projects -- 6.5.1. Text-Related Questions and Tasks -- 6.5.2. Set-Up for Course Projects -- References (Part C) -- pt. D COMPUTER SIMULATIONS OF FLUID-PARTICLE MIXTURE FLOWS -- ch. 7 Modeling and Simulation Aspects -- 7.1. Introduction -- 7.2. Mathematical Modeling -- 7.3. Computer Simulation -- 7.3.1. Result Interpretation -- 7.3.2. Computational Design Aspects -- ch. 8 Computational Case Studies -- 8.1. Introduction -- 8.2. Model Validation and Physical Insight -- 8.2.1. Transient Laminar Flow in a Single Bifurcation -- 8.2.2. Fluid-Particle Dynamics in a Bifurcation -- 8.3. Solid Tumor Targeting with Microspheres -- 8.3.1. Direct Targeting Methodology -- 8.3.2. Optimal Liver Tumor Targeting Study -- 8.4. Homework Assignments and Course Projects -- 8.4.1. Mathematical Modeling -- 8.4.2. Set-Up for Course Projects -- References (Part D) -- APPENDICES -- Appendix A -- A.1. Tensor Calculus -- A.1.1. Definitions -- A.1.2. Operations with? -- A.1.3. Some Tensor Identities -- A.2. Differentiation -- A.2.1. Differential Time Operators -- A.2.2. Total Differential -- A.2.3. Truncated Taylor Series Expansions and Binomial Theorem -- A.2.4. Hyperbolic Functions -- A.3. Integral Transformations -- A.3.1. Divergence Theorem -- A.3.2. Leibniz Rule -- A.3.3. Error Function -- A.3.4. Integral Methods -- A.4. Ordinary Differential Equations -- A.5. Transport Equations (Continuity, Momentum, and Heat Transfer) -- A.5.1. Continuity Equation -- A.5.2. Equation of Motion (or Linear Momentum Equation) -- A.5.3. Momentum Equation for Constant-Property Fluids -- A.5.4. Heat Transfer Equation for Constant-Property Fluids -- A.5.5. Stresses:? =?[??+(??)tr] and Fluxes: qcond = -k?T -- A.5.6. Dissipation Function for Newtonian Fluids -- Appendix B -- B.1. Conversion Factors -- B.2. Properties -- B.3. Drag Coefficient: (A) Smooth Sphere and (B) An Infinite Cylinder as a Function of Reynolds Number -- B.4. Moody Chart -- References (Appendices)
Summary Fluidics originated as the description of pneumatic and hydraulic control systems, where fluids were employed (instead of electric currents) for signal transfer and processing. Microfluidics and Nanofluidics: Theory and Selected Applications offers an accessible, broad-based coverage of the basics through advanced applications of microfluidics and nanofluidics. It is essential reading for upper-level undergraduates and graduate students in engineering and professionals in industry
Bibliography Includes bibliographical references and index
Notes Print version record
Subject Microfluidics.
Nanofluids.
SCIENCE -- Mechanics -- Fluids.
TECHNOLOGY & ENGINEERING -- Engineering (General)
Microfluidics
Nanofluids
Form Electronic book
ISBN 0470619031
9780470619032
1118415272
9781118415276
111841800X
9781118418000
1118749898
9781118749890
9781306207935
1306207932