Limit search to available items
Book Cover
E-book
Author Grundmann, Marius.

Title The physics of semiconductors : an introduction including nanophysics and applications / Marius Grundmann
Edition 2nd ed
Published Berlin ; Heidelberg : Springer, ©2010

Copies

Description 1 online resource (xxxvii, 864 pages) : illustrations
Series Graduate texts in physics
Graduate texts in physics.
Contents Note continued: 4.4.4. Antiphase and Inversion Domains -- 4.5. Disorder -- 5. Mechanical Properties -- 5.1. Introduction -- 5.2. Lattice Vibrations -- 5.2.1. Monoatomic Linear Chain -- 5.2.2. Diatomic Linear Chain -- 5.2.3. Lattice Vibrations of a Three-Dimensional Crystal -- 5.2.4. Density of States -- 5.2.5. Phonons -- 5.2.6. Localized Vibrational Modes -- 5.2.7. Phonons in Alloys -- 5.2.8. Electric Field Created by Optical Phonons -- 5.3. Elasticity -- 5.3.1. Thermal Expansion -- 5.3.2. Stress-Strain Relation -- 5.3.3. Biaxial Strain -- 5.3.4. Three-Dimensional Strain -- 5.3.5. Substrate Bending -- 5.3.6. Scrolling -- 5.3.7. Critical Thickness -- 5.4. Cleaving -- 6. Band Structure -- 6.1. Introduction -- 6.2. Electrons in a Periodic Potential -- 6.2.1. Bloch's Theorem -- 6.2.2. Free-Electron Dispersion -- 6.2.3. Kronig-Penney Model -- 6.2.4. Lattice Vector Expansion -- 6.2.5. Kramer's degeneracy -- 6.3. Band Structure of Selected Semiconductors -- 6.3.1. Silicon -- 6.3.2. Germanium -- 6.3.3. GaAs -- 6.3.4. GaP -- 6.3.5. GaN -- 6.3.6. Lead Salts -- 6.3.7. Chalcopyrites -- 6.3.8. Delafossites -- 6.3.9. Perovskites -- 6.4. Alloy Semiconductors -- 6.5. Amorphous Semiconductors -- 6.6. Systematics of Semiconductor Band Gaps -- 6.7. Temperature Dependence of the Band Gap -- 6.8. Electron Dispersion -- 6.8.1. Equation of Electron Motion -- 6.8.2. Effective Mass of Electrons -- 6.8.3. Polaron Mass -- 6.8.4. Nonparabolicity of Electron Mass -- 6.9. Holes -- 6.9.1. Hole Concept -- 6.9.2. Hole Dispersion Relation -- 6.9.3. Valence-Band Fine Structure -- 6.10. Strain Effect on the Band Structure -- 6.10.1. Strain Effect on Band Edges -- 6.10.2. Strain Effect on Effective Masses -- 6.10.3. Interaction with a Localized Level -- 6.11. Density of States -- 6.11.1. General Band Structure
Note continued: 6.11.2. Free-Electron Gas -- 7. Electronic Defect States -- 7.1. Introduction -- 7.2. Fermi Distribution -- 7.3. Carrier Concentration -- 7.4. Intrinsic Conduction -- 7.5. Shallow Defects -- 7.5.1. Donors -- 7.5.2. Acceptors -- 7.5.3. Compensation -- 7.5.4. Multiple Impurities -- 7.5.5. Amphoteric Impurities -- 7.5.6. High Doping -- 7.6. Quasi-Fermi Levels -- 7.7. Deep Levels -- 7.7.1. Charge States -- 7.7.2. Double Donors -- 7.7.3. Double Acceptors -- 7.7.4. Jahn-Teller Effect -- 7.7.5. Negative-U Center -- 7.7.6. DX Center -- 7.7.7. EL2 Defect -- 7.7.8. Semi-insulating Semiconductors -- 7.7.9. Isoelectronic Impurities -- 7.7.10. Surface States -- 7.8. Hydrogen in Semiconductors -- 8. Transport -- 8.1. Introduction -- 8.2. Conductivity -- 8.3. Low-Field Transport -- 8.3.1. Mobility -- 8.3.2. Microscopic Scattering Processes -- 8.3.3. Ionized Impurity Scattering -- 8.3.4. Deformation Potential Scattering -- 8.3.5. Piezoelectric Potential Scattering -- 8.3.6. Polar Optical Scattering -- 8.3.7. Dislocation Scattering -- 8.3.8. Grain Boundary Scattering -- 8.3.9. Temperature Dependence -- 8.3.10. Doping Dependence -- 8.3.11. Piezoresistivity -- 8.4. Hall Effect -- 8.5. High-Field Transport -- 8.5.1. Drift-Saturation Velocity -- 8.5.2. Negative Differential Resistivity -- 8.5.3. Velocity Overshoot -- 8.5.4. Impact Ionization -- 8.6. High-Frequency Transport -- 8.7. Diffusion -- 8.8. Continuity Equation -- 8.9. Heat Conduction -- 8.10. Coupled Heat and Charge Transport -- 8.10.1. Seebeck Effect -- 8.10.2. Peltier Effect -- 9. Optical Properties -- 9.1. Spectral Regions and Overview -- 9.2. Reflection and Diffraction -- 9.3. Absorption -- 9.4. Electron-Photon Interaction -- 9.5. Band-Band Transitions -- 9.5.1. Joint Density of States
Note continued: 9.5.2. Direct Transitions -- 9.5.3. Indirect Transitions -- 9.5.4. Urbach Tail -- 9.5.5. Intravalence-Band Absorption -- 9.5.6. Amorphous Semiconductors -- 9.5.7. Excitons -- 9.5.8. Phonon Broadening -- 9.5.9. Exciton Polariton -- 9.5.10. Bound-Exciton Absorption -- 9.5.11. Biexcitons -- 9.5.12. Trions -- 9.5.13. Burstein-Moss Shift -- 9.5.14. Band Gap Renormalization -- 9.5.15. Electron -Hole Droplets -- 9.5.16. Two-Photon Absorption -- 9.6. Impurity Absorption -- 9.7. Free-Carrier Absorption -- 9.8. Lattice Absorption -- 9.8.1. Dielectric Constant -- 9.8.2. Reststrahlenbande -- 9.8.3. Polaritons -- 9.8.4. Phonon-Plasmon Coupling -- 10. Recombination -- 10.1. Introduction -- 10.2. Band-Band Recombination -- 10.2.1. Spontaneous Emission -- 10.2.2. Absorption -- 10.2.3. Stimulated Emission -- 10.2.4. Net Recombination Rate -- 10.2.5. Recombination Dynamics -- 10.2.6. Lasing -- 10.3. Exciton Recombination -- 10.3.1. Free Excitons -- 10.3.2. Bound Excitons -- 10.3.3. Alloy Broadening -- 10.4. Phonon Replica -- 10.5. Self-absorption -- 10.6. Donor-Acceptor Pair Transitions -- 10.7. Inner-Impurity Recombination -- 10.8. Auger Recombination -- 10.9. Band-Impurity Recombination -- 10.9.1. Shockley-Read-Hall Kinetics -- 10.9.2. Multilevel Traps -- 10.10. Field Effect -- 10.10.1. Thermally Activated Emission -- 10.10.2. Direct Tunneling -- 10.10.3. Assisted Tunneling -- 10.11. Recombination at Extended Defects -- 10.11.1. Surfaces -- 10.11.2. Grain Boundaries -- 10.11.3. Dislocations -- 10.12. Excess-Carrier Profiles -- 10.12.1. Generation at Surface -- 10.12.2. Generation in the Bulk -- pt. II Selected Topics -- 11. Heterostructures -- 11.1. Introduction -- 11.2. Heteroepitaxy -- 11.2.1. Growth Methods -- 11.2.2. Substrates -- 11.2.3. Growth Modes
Note continued: 11.2.4. Heterosubstrates -- 11.2.5. Pseudomorphic Structures -- 11.2.6. Plastic Relaxation -- 11.2.7. Surfactants -- 11.3. Energy Levels in Heterostructures -- 11.3.1. Band Lineup in Heterostructures -- 11.3.2. Quantum Wells -- 11.3.3. Superlattices -- 11.3.4. Single Heterointerface Between Doped Materials -- 11.4. Recombination in Quantum Wells -- 11.4.1. Thickness Dependence -- 11.4.2. Broadening Effects -- 11.4.3. Quantum Confined Stark Effect -- 11.5. Isotope Superlattices -- 11.6. Wafer Bonding -- 12. External Fields -- 12.1. Electric Fields -- 12.1.1. Bulk Material -- 12.1.2. Quantum Wells -- 12.2. Magnetic Fields -- 12.2.1. Free-Carrier Absorption -- 12.2.2. Energy Levels in Bulk Crystals -- 12.2.3. Energy Levels in a 2DEG -- 12.2.4. Shubnikov-de Haas Oscillations -- 12.3. Quantum Hall Effect -- 12.3.1. Integral QHE -- 12.3.2. Fractional QHE -- 12.3.3. Weiss Oscillations -- 13. Nanostructures -- 13.1. Introduction -- 13.2. Quantum Wires -- 13.2.1. V-Groove Quantum Wires -- 13.2.2. Cleaved-Edge Overgrowth Quantum Wires -- 13.2.3. Nanowhiskers -- 13.2.4. Nanobelts -- 13.2.5. Quantization in Two-Dimensional Potential Wells -- 13.3. Quantum Dots -- 13.3.1. Quantization in Three-Dimensional Potential Wells -- 13.3.2. Electrical and Transport Properties -- 13.3.3. Self-assembled Preparation -- 13.3.4. Optical Properties -- 14. Polarized Semiconductors -- 14.1. Introduction -- 14.2. Spontaneous Polarization -- 14.3. Ferroelectricity -- 14.3.1. Materials -- 14.3.2. Soft Phonon Mode -- 14.3.3. Phase Transition -- 14.3.4. Domains -- 14.3.5. Optical Properties -- 14.4. Piezoelectricity -- 14.4.1. Piezoelectric Effect -- 14.4.2. Zincblende Crystals -- 14.4.3. Wurtzite Crystals -- 14.4.4. Piezoelectric Effects in Nanostructures -- 15. Magnetic Semiconductors
Note continued: 15.1. Introduction -- 15.2. Magnetic Semiconductors -- 15.3. Diluted Magnetic Semiconductors -- 15.4. Spintronics -- 15.4.1. Spin Transistor -- 15.4.2. Spin LED -- 16. Organic Semiconductors -- 16.1. Materials -- 16.1.1. Small Organic Molecules, Polymers -- 16.1.2. Organic Semiconductor Crystals -- 16.2. Electronic Structure -- 16.3. Doping -- 16.4. Transport Properties -- 16.5. Optical Properties -- 17. Graphene and Carbon Nanotubes -- 17.1. Graphene -- 17.1.1. Structure -- 17.1.2. Band Structure -- 17.1.3. Electrical Properties -- 17.1.4. Other Two-Dimensional Crystals -- 17.2. Carbon Nanotubes -- 17.2.1. Structure -- 17.2.2. Band Structure -- 17.2.3. Optical Properties -- 17.2.4. Other Anorganic Nanotubes -- 18. Dielectric Structures -- 18.1. Photonic Band Gap Materials -- 18.1.1. Introduction -- 18.1.2. General 1D Scattering Theory -- 18.1.3. Transmission of an N-Period Potential -- 18.1.4. Quarter-Wave Stack -- 18.1.5. Formation of a 3D Band Structure -- 18.1.6. Disorder -- 18.1.7. Defect Modes -- 18.1.8. Coupling to an Electronic Resonance -- 18.2. Microscopic Resonators -- 18.2.1. Microdiscs -- 18.2.2. Purcell Effect -- 18.2.3. Deformed Resonators -- 18.2.4. Hexagonal Cavities -- 19. Transparent Conductive Oxide Semiconductors -- 19.1. Materials -- 19.2. Properties -- pt. III Applications -- 20. Diodes -- 20.1. Introduction -- 20.2. Metal-Semiconductor Contacts -- 20.2.1. Band Diagram in Equilibrium -- 20.2.2. Space-Charge Region -- 20.2.3. Schottky Effect -- 20.2.4. Capacitance -- 20.2.5. Current-Voltage Characteristic -- 20.2.6. Ohmic Contacts -- 20.2.7. Metal Contacts to Organic Semiconductors -- 20.3. Metal-Insulator-Semiconductor Diodes -- 20.3.1. Band Diagram for Ideal MIS Diode -- 20.3.2. Space-Charge Region -- 20.3.3. Capacitance
Note continued: 20.3.4. Nonideal MIS Diode -- 20.4. Bipolar Diodes -- 20.4.1. Band Diagram -- 20.4.2. Space-Charge Region -- 20.4.3. Capacitance -- 20.4.4. Current-Voltage Characteristics -- 20.4.5. Breakdown -- 20.4.6. Organic Semiconductor Diodes -- 20.5. Applications and Special Diode Devices -- 20.5.1. Rectification -- 20.5.2. Frequency Mixing -- 20.5.3. Voltage Regulator -- 20.5.4. Zener Diodes -- 20.5.5. Varactors -- 20.5.6. Fast-Recovery Diodes -- 20.5.7. Step-Recovery Diodes -- 20.5.8. Pin-Diodes -- 20.5.9. Tunneling Diodes -- 20.5.10. Backward Diodes -- 20.5.11. Gunn Diodes -- 20.5.12. Heterostructure Diodes -- 21. Light-to-Electricity Conversion -- 21.1. Photocatalysis -- 21.2. Photoconductors -- 21.2.1. Introduction -- 21.2.2. Photoconductivity Detectors -- 21.2.3. Electrophotography -- 21.2.4. QWIPs -- 21.2.5. Blocked Impurity-Band Detectors -- 21.3. Photodiodes -- 21.3.1. Introduction -- 21.3.2. pn Photodiodes -- 21.3.3. Pin Photodiodes -- 21.3.4. Position-Sensing Detector -- 21.3.5. MSM Photodiodes -- 21.3.6. Avalanche Photodiodes -- 21.3.7. Traveling-Wave Photodetectors -- 21.3.8. Charge Coupled Devices -- 21.3.9. Photodiode Arrays -- 21.4. Solar Cells -- 21.4.1. Solar Radiation -- 21.4.2. Ideal Solar Cells -- 21.4.3. Real Solar Cells -- 21.4.4. Design Refinements -- 21.4.5. Modules -- 21.4.6. Solar-Cell Types -- 21.4.7. Commercial Issues -- 22. Electricity-to-Light Conversion -- 22.1. Radiometric and Photometric Quantities -- 22.1.1. Radiometric Quantities -- 22.1.2. Photometric Quantities -- 22.2. Scintillators -- 22.2.1. CIE Chromaticity Diagram -- 22.2.2. Display Applications -- 22.2.3. Radiation Detection -- 22.2.4. Luminescence Mechanisms -- 22.3. Light-Emitting Diodes -- 22.3.1. Introduction -- 22.3.2. Spectral Ranges -- 22.3.3. Quantum Efficiency
Note continued: 22.3.4. Device Design -- 22.3.5. White LEDs -- 22.3.6. Quantum Dot LED -- 22.3.7. Organic LED -- 22.4. Lasers -- 22.4.1. Introduction -- 22.4.2. Applications -- 22.4.3. Gain -- 22.4.4. Optical Mode -- 22.4.5. Loss Mechanisms -- 22.4.6. Threshold -- 22.4.7. Spontaneous Emission Factor -- 22.4.8. Output Power -- 22.4.9. Temperature Dependence -- 22.4.10. Mode Spectrum -- 22.4.11. Longitudinal Single-Mode Lasers -- 22.4.12. Tunability -- 22.4.13. Modulation -- 22.4.14. Surface-Emitting Lasers -- 22.4.15. Optically Pumped Semiconductor Lasers -- 22.4.16. Quantum Cascade Lasers -- 22.4.17. Hot-Hole Lasers -- 22.5. Semiconductor Optical Amplifiers -- 23. Transistors -- 23.1. Introduction -- 23.2. Bipolar Transistors -- 23.2.1. Carrier Density and Currents -- 23.2.2. Current Amplification -- 23.2.3. Ebers -Moll Model -- 23.2.4. Current-Voltage Characteristics -- 23.2.5. Basic Circuits -- 23.2.6. High-Frequency Properties -- 23.2.7. Heterobipolar Transistors -- 23.2.8. Light-Emitting Transistors -- 23.3. Field-Effect Transistors -- 23.4. JFET and MESFET -- 23.4.1. General Principle -- 23.4.2. Static Characteristics -- 23.4.3. Normally On and Normally Off FETs -- 23.4.4. Field-Dependent Mobility -- 23.4.5. High-Frequency Properties -- 23.5. MOSFETs -- 23.5.1. Operation Principle -- 23.5.2. Current-Voltage Characteristics -- 23.5.3. MOSFET Types -- 23.5.4. Complementary MOS -- 23.5.5. Large-Scale Integration -- 23.5.6. Tunneling FETs -- 23.5.7. Nonvolatile Memories -- 23.5.8. Heterojunction FETs -- 23.6. Thin-Film Transistors -- 23.6.1. Annealing of Amorphous Silicon -- 23.6.2. TFT Devices -- 23.6.3. OFETs -- pt. IV Appendices -- A. Tensors -- B. Space Groups -- C. Kramers-Kronig Relations -- D. Oscillator Strength -- E. Quantum Statistics
Note continued: F. k . p Perturbation Theory -- G. Effective-Mass Theory
Summary The Physics of Semiconductors contains ample material for a comprehensive upper-level undergraduate or beginning graduate course, guiding readers to the point where they can choose a special topic and begin supervised research. The textbook provides a balance between essential aspects of solid-state and semiconductor physics, on the one hand, and the principles of various semiconductor devices and their applications in electronic and photonic devices, on the other. It highlights many practical aspects of semiconductors such as alloys, strain, heterostructures, nanostructures, that are necessary in modern semiconductor research but typically omitted in textbooks. Coverage also includes additional advanced topics, such as Bragg mirrors, resonators, polarized and magnetic semiconductors. The text derives explicit formulas for many results to support better understanding of the topics. The Physics of Semiconductors requires little or no prior knowledge of solid-state physics and evolved from a highly regarded two-semester course. In the second edition many topics are extended and treated in more depth. e.g. dopant diffusion, nanowires, recombination in organic semiconductors, multi-junction solar cells, quantum dot and organic LEDs, thin film transistors, carbon-based nanostructures and transparent conductive oxides
Analysis nanotechnologie
nanotechnology
stroomketens
electric circuits
elektronica
electronics
instrumentatie
instrumentation
biofysica
biophysics
halfgeleiders
semiconductors
fysica
physics
Physics (General)
Fysica (algemeen)
Bibliography Includes bibliographical references (pages 793-842) and index
Notes English
Print version record
Subject Semiconductors.
semiconductor.
Physique.
Semiconductors
Form Electronic book
ISBN 9783642138843
3642138845
3642138837
9783642138836
1280382147
9781280382147
9786613560056
6613560057