Limit search to available items
Book Cover
E-book

Title Relativistic methods for chemists / edited by Maria Barysz, Yasuyuki Ishikawa
Published Dordrecht ; London : Springer, ©2010

Copies

Description 1 online resource (xiv, 613 pages) : illustrations
Series Challenges and advances in computational chemistry and physics ; v. 10
Challenges and advances in computational chemistry and physics ; 10.
Contents Note continued: 2.3. Seventh and Eighth Period Elements -- 2.3.1. General -- 2.3.2. s-Block Elements -- 2.3.3. Superheavy Elements -- 2.4. Conclusions -- Acknowledgments -- References -- 3. Why do we Need Relativistic Computational Methods? / Jacek Styszynski -- 3.1. Introduction -- 3.2. Energetic Structure and Spectroscopic Constants -- 3.2.1. Diatomic Molecules -- 3.2.2. Polyatomic Molecules -- 3.3. Electric Properties of Molecules -- 3.3.1. Electric Properties of Interhalogens -- 3.3.2. Electric Field Gradient and Quadrupole Moments -- 3.4. Conclusions -- Appendix -- References -- 4. Two-Component Relativistic Theories / Maria Barysz -- 4.1. Introduction -- 4.2. Two-Component Methodology -- 4.2.1. Elimination of the Small Component and the Pauli Expansion -- 4.2.2. Regular Approximations (RA) -- 4.2.3. Unitary Transformations of the Dirac Hamiltonian -- 4.2.4. Infinite Order Two-Component (IOTC) Method -- 4.3. Interactions -- 4.4. Summary and Conclusion -- Acknowledgments -- References -- 5. Relativistic Density Functional Theory / Christoph van Wiillen -- 5.1. Nonrelativistic Density Functional Theory Basics -- 5.2. Relativistic Extension of DFT -- 5.3. Relativistic Spin Density Functional Theory: Collinear and Noncollinear Approximation -- 5.4. Relativistic Exchange-Correlation Functionals -- 5.5. Dirac-Kohn-Sham Implementations -- 5.6. Quasirelativistic Methods -- 5.7. Presence, and the Future -- References -- 6. Relativistic Pseudopotentials / Michael Dolg -- 6.1. Introduction -- 6.2. Theoretical Considerations -- 6.2.1. Phillips-Kleinman Equation -- 6.2.2. Valence Electron Model Hamiltonian for an Atom -- 6.2.3. Analytical Form of Non-relativistic Pseudopotentials -- 6.2.4. Analytical Form of Scalar-Relativistic Pseudopotentials -- 6.2.5. Analytical Form of Relativistic Pseudopotentials
Note continued: 6.2.6. Molecular Pseudopotentials -- 6.2.7. Core-Polarization Potentials -- 6.2.8. Core-Core/Nucleus Repulsion Corrections -- 6.3. Energy-Consistent Pseudopotentials -- 6.3.1. Some Historical Aspects -- 6.3.2. Method of Parametrization -- 6.3.3. Availability of Pseudopotentials and Valence Basic Sets -- 6.4. Other Effective Core Potential Methods -- 6.4.1. Shape-Consistent Pseudopotentials -- 6.4.2. Model Potential Method -- 6.4.3. DFT-Based Effective Core Potentials -- 6.5. Example: Uranium -- 6.5.1. Choice of the Reference Data -- 6.5.2. Choice of the Core -- 6.5.3. Pseudopotential Adjustment -- 6.5.4. Valence Basis Set Optimization -- 6.5.5. Calibration and Application -- 6.6. Conclusions -- Acknowledgements -- References -- 7. Four-Component Electronic Structure Methods / Uzi Kaldor -- 7.1. Introduction -- 7.2. Four-Component Methodology -- 7.2.1. Dirac Equation -- Historical Overview -- 7.2.2. QED Hamiltonian -- 7.2.3. Particle-Particle Interaction and the No-Virtual-Pair approximation -- 7.2.4. NVPA Hamiltonian and Benchmarking of Four-Component Methods -- 7.2.5. Standard Four-Component SCF Procedure for Atoms and Molecules -- 7.3. NVPA Multi-Root Multi-Reference Fock-Space Coupled Cluster Method -- 7.3.1. Basic FSCC Method -- 7.3.2. Intermediate Hamiltonian CC Method -- 7.4. Applications: Heavy Elements -- 7.4.1. When is an Atom "Heavy"? Ionization Potentials of Alkali Atoms -- 7.4.2. Gold Atom: Local Maximum of Relativistic Effects -- 7.4.3. f2 Levels of Pr3+ : Importance of Dynamic Correlation -- 7.4.4. Electron Affinities of Alkali Atoms -- Accuracy at the 1 me V Level -- 7.4.5. Electron Affinities in Group 13 -- 7.4.6. Properties Other Than Energy: Nuclear Quadrupole Moments -- 7.5. Applications: Superheavy Elements -- 7.5.1. Ground State Configuration of Roentgenium (Elll)
Note continued: 7.5.2. Ground State of Rutherfordium -- Relativity vs. Correlation -- 7.5.3. Eka-Lead (Element 114) -- How Inert is it? -- 7.5.4. Electronic Spectrum of Nobelium (Z = 102) and Lawrencium (Z = 103) -- 7.5.5. Can a Rare Gas Atom Bind an Electron? -- 7.5.6. Adsorption of Superheavy Atoms on Surfaces-Identifying and Characterizing New Elements -- 7.6. Directions for Future Development -- 7.6.1. Beyond Standard Four-Component Hartree-Fock Method: the QED-SCF Procedure -- 7.6.2. Beyond NVPA: QED Many-Body Description and the Covariant Evolution Operator Approach -- 7.6.3. Generalized Fock Space. Double Fock-Space CC -- 7.7. Summary and Conclusion -- Acknowledgments -- References -- 8. Effects of Relativity in Materials Science: Core Electron Spectra / R. Broer -- 8.1. Introduction -- 8.2. Computational Methods -- 8.3. X-Ray Photoelectron Spectra -- 8.4. X-Ray Absorption and Electron Energy Loss Spectra -- 8.5. Summary -- Acknowledgments -- References -- 9. Relativistic Symmetries in the Electronic Structure and Properties of Molecules / Jerzy Lesczynski -- 9.1. Introduction -- 9.2. Spin-Orbit Interaction and Double Group -- 9.3. Double Groups and Relativistic Treatment of Molecules -- 9.3.1. Diatomic Systems -- 9.3.2. Polyatomic Systems -- 9.4. Applications of Double Group Symmetry in Calculating Molecular Properties -- 9.4.1. Diatomics -- 9.4.2. Polyatomic Systems -- 9.5. Time Reversal -- 9.5.1. Parity -- 9.5.2. Charge Conjugation -- 9.5.3. CPT Theorem and Concept of Time Reversal -- 9.5.4. Properties of T and its Implication in Molecular Properties -- 9.5.5. Time Reversal in Group Theory -- 9.6. Concluding Remarks -- Acknowledgements -- Appendix -- References -- 10. Relativistic String-Based Electron Correlation Methods / Timo Fleig -- 10.1. Introduction -- 10.2. General Principles -- 10.2.1. Time-Reversal Symmetry
Note continued: 10.2.2. Kramers-Paired Spinors -- 10.2.3. Integrals Over Kramers-Paired Spinors -- 10.2.4. Double Group Symmetry -- 10.2.5. Generalized Active Spaces -- 10.3. Many-Particle Wavefunctions -- 10.3.1. Spinor Strings -- 10.3.2. Relativistic Excitation Classes -- 10.4. Wavefunction-Based Electron Correlation Methods -- 10.4.1. Hamiltonian Operators -- 10.4.2. Configuration Interaction -- 10.4.3. Multi-Configuration SCF -- 10.4.4. Coupled Cluster -- 10.5. Sample Applications -- 10.5.1. Tl2 Ground and Excited States -- 10.5.2. Br2/2+ -- 10.5.3. I3 and I3 -- 10.6. Concluding Remarks -- Acknowledgements -- References -- 11. Electronic Structure and Chemistry of the Heaviest Elements / V. Pershina -- 11.1. Introduction -- 11.2. Production and Identification of the Heaviest Elements -- 11.3. Experimentla Chemical Studies -- 11.3.1. Gas-Phase Chemistry -- 11.3.2. Liquid-Phase Chemistry -- 11.4. Theoretical Studies -- 11.4.1. Role of Theoretical Studies -- 11.4.2. Relativistic and QED Effects on Atomic Electronic Shells of the Heaviest Elements -- 11.5. Relativistic Quantum Chemical Methods -- 11.5.1. Atomic Codes -- 11.5.2. Molecular Methods -- 11.6. Atomic Properties of the Heaviest Elements and Relativistic Effects -- 11.6.1. Electronic Configurations -- 11.6.2. Ionization Potentials, Electron Affinities and Stable Oxidation States -- 11.6.3. Atomic/Ionic/Covalent Radii and Polarizability -- 11.7. GAS-Phase Chemistry -- 11.7.1. Rf Through HS -- 11.7.2. Rg -- 11.7.3. Element 112 -- 11.7.4. Element 113 -- 11.7.5. Element 114 -- 11.7.6. Element 115-118 -- 11.7.7. Elements with Z> 118 -- 11.7.8. Summary of Predictions of Volatility of the Heaviest Elements and Their Compounds -- 11.8. Aqueous Chemistry -- 11.8.1. Redox Potentials and Reduction Experiments
Note continued: 11.8.2. Complex Formation and Extraction by Liquid Chromatography -- 11.8.3. Summary of Predictions of the Complex Formation -- 11.9. Summary and Outlook -- Acknowledgements -- References -- 12. Relativistic Effects on Magnetic Resonance Parameters and Other Properties of Inorganic Molecules and Metal Complexes / Jachen Autschbach -- 12.1. Introduction -- 12.2. Computing Molecular Properties -- 12.2.1. Relativistic Methods in Quantum Chemistry -- 12.2.2. Molecular Response Properties: A Brief Survey. Energy and Quasi-Energy Perturbations -- 12.2.3. Resonance: Computation of Excitation Spectra -- 12.2.4. Examples of Response Properties -- 12.2.5. Perturbation Operators -- 12.2.6. Hyperfine Operators: from Four to Two to One Component and the Nonrelativistic Limit -- 12.2.7. Where in the Molecule Do the Properties "Originate" from? -- 12.3. Benchmark Data and Case Studies -- 12.3.1. NMR Parameters -- 12.3.2. Electron Paramagnetic Resonance -- 12.3.3. Electric Field Gradients (EFGs) -- 12.3.4. Dipole Moments, Polarizabilities, and Linear-Response Based Computations of Excitation Energies -- 12.4. Concluding Remarks -- Acknowledgements -- References
Summary Relativistic Methods for Chemists, written by a highly qualified team of authors, is targeted at both experimentalists and theoreticians interested in the area of relativistic effects in atomic and molecular systems and processes and in their consequences for the interpretation of the heavy element's chemistry
The theoretical part of the book focuses on the relativistic methods for molecular calculations discussing problems such as relativistic two-component theory, density functional theory, pseudopotentials and correlations. These chapters are mostly addressed to experimentalists with only general background in theory an to the computational chemists without training in relativistic methods. Teh experimentally oriented chapters describe the use of relativistic methods in different applications focusing on the design of new materials based on heavy element compounds, the role of the spin-orbit coupling in photochemistry and photobiology, and its relations to relativistic description of matter and radiation. This part of the book includes subjects of interest to theoreticians and experimentalists working in different areas of chemistry
Relativistic Methods for Chemistis is written at an intermediate level in order to appeal to a broader audience than just experts working in the field of relativistic theory, The book is alimeded at individuals not highly versed in these methods who want to acquire theh rudiments of relativistic computing and the associated problems of importance for the heavy element chemistry
Relativistic Methods for Chemists is written for graduates students, academics, and researchers in theeoretical chemistry as well as experimentalists in materiasl chemistry, inorganic chemistry, and physical chemistry. --Book Jacket
Analysis chemie
chemistry
fysische chemie
physical chemistry
computationele chemie
computational chemistry
materiaalkunde
materials science
anorganische scheikunde
inorganic chemistry
Chemistry (General)
Chemie (algemeen)
Bibliography Includes bibliographical references and index
Notes English
Print version record
In Springer eBooks
Subject Atomic theory.
Molecular theory.
Relativistic quantum theory.
Chemistry.
Chemistry
Chemistry, Inorganic
chemistry.
inorganic chemistry.
SCIENCE -- Chemistry -- Physical & Theoretical.
Molecular theory.
Relativistic quantum theory.
Chemistry.
Science.
Atomic theory.
Chimie.
Science des matériaux.
Atomic theory
Molecular theory
Relativistic quantum theory
Form Electronic book
Author Barysz, Maria
Ishikawa, Yasuyuki
ISBN 9781402099755
1402099754
9781402099748
1402099746
128298070X
9781282980709
9786612980701
6612980702