Limit search to available items
Book Cover
E-book
Author Mittemeijer, E. J.

Title Fundamentals of materials science / by E.J. Mittemeijer
Published Berlin ; London : Springer, 2010

Copies

Description 1 online resource
Series Graduate Texts in Physics Ser
Graduate Texts in Physics Ser
Contents Note continued: 4.1.4. Description of Lattice Planes and Directions; Miller and Miller[-]Bravais Indices -- 4.2. Crystal Structures of Elements -- 4.2.1. Crystal Structures Derived from Close Packed Arrangements of Hard Spheres -- 4.2.2. Body Centred Cubic (b.c.c.) Crystal Structure -- 4.2.3. Further Crystal Structures of Elements -- 4.2.4. Coordination Number -- 4.2.5. Polymorphism and Allotropy -- 4.3. Notions Alloy, Solid Solution, Ordered Solid Solution and Compound -- 4.4. Crystalline Solid Solutions and Compounds -- 4.4.1. Substitutional Solid Solutions -- 4.4.2. Interstitial Solid Solutions -- Intermezzo: Thermochemical Surface Engineering; Nitriding and Carburizing of Iron and Steels -- 4.4.3. Crystal Structures of Further Materials -- 4.5. Determination of the Crystal Structure; X-Ray Diffraction Analysis -- Intermezzo: The von Laue Theory -- 4.6. Stereographic Projection -- 4.7. Texture of a Polycrystal; the Pole Figure, the Inverse Pole Figure and the Orientation Distribution Function -- 4.8. Aperiodic Crystals -- 4.8.1. Incommensurately Modulated Atomic Structures -- 4.8.2. Quasicrystals -- Intermezzo: A Revolution in Crystallography; "Young" Versus "Old" -- Epilogue: The Notion Crystal Revisited -- Appendix: How to Deal with Atoms at Unit-Cell Boundaries -- References -- 5.1. Point Defects (Zero-Dimensional): Thermal and Constitutional Vacancies; Interstitial, Substitutional and Antistructure Atoms; Schottky and Frenkel Defects -- 5.2. Line Defects (One-Dimensional): Edge and Screw Dislocations -- 5.2.1. Edge Dislocation -- 5.2.2. Screw Dislocation -- 5.2.3. Dislocation Line and Burgers Vector; Dislocation Density -- Intermezzo: A Historical Note About the Burgers Vector -- 5.2.4. Strain Energy of a Dislocation -- 5.2.5. Glide of Dislocations; Slip Systems -- Intermezzo: The Peierls Stress
Note continued: 5.2.6. Dislocation Production: Frank[-]Read Source, Cross-Slip and Vacancy Condensation -- 5.2.7. Climb of Dislocations -- 5.2.8. Partial and Sessile Dislocations -- 5.3. Planar Defects (Two-Dimensional): Grain Boundaries, Twin Boundaries, Stacking Faults and Antiphase Boundaries; Coherent and Incoherent Interfaces -- Intermezzo: Coherent and Incoherent Interfaces Versus Coherent and Incoherent Diffraction -- 5.4. Volume Defects (Three-Dimensional): Second-Phase Particles and Pores -- References -- 6.1. Lens -- 6.1.1. Paraxial Approximation -- 6.1.2. Compound Lens -- 6.2. Image Formation -- 6.3. (Reflected) Light Optical Microscope -- 6.3.1. Magnifier ("Loupe") -- 6.3.2. Compound Microscope -- 6.4. Kohler Illumination -- 6.5. Resolving Power -- 6.5.1. Minimal Image Construction -- 6.5.2. Maximal Magnification -- 6.6. Bright and Dark Field and Other Imaging Techniques by Light Microscopy -- 6.7. Transmission Electron Microscopy -- 6.7.1. Basic Constitution and Action of the TEM: Imaging and Diffraction Modes -- 6.7.2. Diffraction Pattern; the Zone Law -- 6.7.3. Diffraction Contrast Images: Bright Field and Dark Field "Imaging" -- 6.7.4. Examples of Bright and Dark Field TEM Images -- 6.7.5. Convergent Beam Electron Diffraction (CBED); Microdiffraction; Scanning Transmission Electron Microscopy (STEM) -- 6.7.6. High-Resolution Transmission Electron Microscopy (HRTEM) -- 6.7.7. Analytical Electron Microscopy (AEM); Chemical Composition Maps; Electron Probe Micro-Analysis (EPMA) and Electron Energy Loss Spectroscopy (EELS) -- 6.8. Scanning Electron Microscopy -- 6.8.1. Secondary Electron Images -- 6.8.2. Back-Scattered Electron Images -- 6.8.3. Chemical Composition Maps; Electron Probe Micro-Analysis (EPMA) -- 6.9. X-ray Diffraction Analysis of the Imperfect Microstructure -- 6.9.1. Determination of Crystallite Size and Microstrain
Note continued: 6.9.2. Determination of (Residual) Macrostress -- Intermezzo: Grain Interaction -- Intermezzo: Surface Anisotropy and Thin Filmy -- References -- 7.1. Notion Phase -- 7.2. Notion Component -- 7.3. Notions Equilibrium and Stationary State: Internal Energy, Entropy, (Helmholtz) Free Energy and Gibbs Energy -- 7.4. Degrees of Freedom; the Phase Rule -- 7.5. Phase Diagrams -- 7.5.1. One-Component Systems -- Intermezzo: Entropy of Fusion and the Structure of Liquids -- 7.5.2. Binary Systems -- 7.5.3. Ternary Systems -- 7.6. Microstructure Development with Reference to the Phase Diagram -- References -- 8.1. Continuum Approach to Diffusion; Fick's First and Second Laws -- 8.2. Atomistic Approach to Diffusion -- Intermezzo: Brownian motion -- 8.3. Solutions of Fick's Laws -- 8.4. Diffusion Mechanisms in Crystalline Systems -- 8.4.1. Exchange Mechanisms -- 8.4.2. Vacancy Mechanism; Substitutional Diffusion -- 8.4.3. Interstitial Diffusion -- 8.5. Jump Frequency and the Activation Energy of Diffusion -- 8.5.1. Determination of & Delta;Hvac -- 8.5.2. Determination of & Delta;Hmig -- 8.6. Microstructure and Diffusion -- 8.6.1. Diffusion Along the Low-Angle Symmetrical Tilt Boundary -- 8.6.2. Diffusion Along a Moving Grain Boundary -- Intermezzo: Priority and Scientific Decency -- Appendix: Diffusion in Thin Film Systems; Concentration[-]Depth Profiles -- References -- 9.1. Thermodynamics and Kinetics of Phase Transformations; Thermal Activation and the Activation Energy -- 9.2. Energetics of Nucleation; Homogeneous and Heterogeneous Transformations; Homogeneous and Heterogeneous Nucleation -- Intermezzo: Nucleation of AIN in Fe[-]Al Alloy -- 9.3. Diffusional and Diffusionless Transformations -- 9.4. Diffusional Transformations; Examples -- 9.4.1. Age-Hardening Alloys; "Clusters", Transition and Equilibrium Precipitates
Note continued: 9.4.2. Eutectoid Transformation -- Intermezzo: The Fe[-]C System; Steels and Cast Irons -- 9.4.3. Discontinuous Transformation -- 9.4.4. Widmanstatten Morphology -- 9.4.5. Grain-Boundary Wetting -- 9.5. Diffusionless Transformations; Examples -- 9.5.1. Massive Transformation -- 9.5.2. Martensitic Transformation -- Intermezzo: Shape Memory Alloys -- Intermezzo: The Hardness of Iron-Based Interstitial Martensitic Specimens -- Intermezzo: Tempering of Iron-Based Interstitial Martensitic Specimens -- 9.6. Analysis of the Kinetics of Phase Transformations -- 9.6.1. Time[-]Temperature[-]Transformation (TTT) Diagrams and Continuous Cooling Transformation (CCT) Diagrams -- 9.6.2. Thermal History and the Stage of Transformation -- 9.6.3. Transformation Rate; the Additivity Rule -- 9.6.4. Heterogeneous Phase Transformations as a Composite Phenomenon: Nucleation, Growth and Impingement -- 9.6.5. Modes of Nucleation -- 9.6.6. Modes of Growth -- 9.6.7. Activation Energies for Nucleation and Growth -- 9.6.8. Extended Volume and Extended Transformed Fraction -- 9.6.9. Modes of Impingement -- 9.6.10. Transformed Fraction -- 9.6.11. Classical and Generalized Johnson[-]Mehl[-]Avrami Equation; the "Additivity Rule" Revisited -- 9.6.12. Effective Activation Energy -- 9.6.13. Experimental Determination of the Degree of Transformation; Dilatometry and Calorimetry -- 9.6.14. Fitting of Kinetic Models -- 9.6.15. Direct Determination of the Effective Activation Energy and the Growth Exponent -- 9.7. Coupling of Thermodynamics to Kinetics -- References -- 10.1. Recovery -- 10.1.1. Dislocation Annihilation and Rearrangement -- 10.1.2. Kinetics of Recovery -- 10.2. Recrystallization -- 10.2.1. "Nucleation" of Recrystallization -- Intermezzo: The History of an Idea; the Subgrain as Origin of Recrystallization
Note continued: 10.2.2. Kinetics of Recrystallization -- 10.3. Grain Growth -- 10.3.1. Grain-Boundary Network; on Grain-Boundary/Interfacial Energy and Tension -- Intermezzo: Interface Stabilized Microstructures -- 10.3.2. Grain-Boundary Curvature-Driven Growth -- 10.3.3. Kinetics of Grain Growth; Inhibition of Grain Growth -- 10.3.4. Abnormal Grain Growth -- 10.3.5. Particle Coarsening; Ostwald Ripening -- References -- 11.1. Elastic Versus Plastic Deformation; Ductile and Brittle Materials -- 11.2. Basic Modes of Uniaxial Deformation; Concepts of Stress and Strain; Uniaxial Elastic Deformation Laws -- Intermezzo: Short History of the Poisson Constant -- Intermezzo: Negative Poisson Constant -- 11.3. Elastically Isotropic and Anisotropic Materials -- 11.4. Elastic Deformation Upon Three-Axial and Biaxial Loading -- 11.5. Elastic Strain Energy -- 11.6. Rubber Elasticity; Elastomeric Behaviour -- 11.7. Viscoelasticity/Anelasticity; Mechanical Hysteresis -- 11.8. Plastic Deformation Characteristics -- 11.9. Tensile Stress[-]Strain Curve; True Stress and True Strain -- 11.9.1. Strain and Strain Rate Due to Dislocation Movement -- 11.9.2. Yield Drop Phenomenon; Cottrell-Bilby Atmospheres -- 11.9.3. Shear Yielding and Craze Yielding -- 11.10. Yielding Criteria in Cases of Two- and Three-Axial Loading -- Intermezzo: Application of the von Mises Criterion to Predict the Location of Failure in Ball Bearings -- 11.11. Critical Resolved Shear Stress; the Plastic Deformation of Single Crystals -- 11.12. Plastic Deformation of Polycrystals -- 11.13. Hardness Parameters; Macroscopic, Microscopic and Nanoscopic -- Intermezzo: The Hardest Materials -- Intermezzo: Combined Nano indentation and Scanning Probe Microscopy -- Intermezzo: Hardness-Depth Profiling on Nanoscale -- 11.14. Strengthening, Hardening Mechanisms (of Metals in Particular)
Note continued: 11.14.1. Strain Hardening (Work Hardening) -- 11.14.2. Grain Size; the Hall[-]Petch Relation -- 11.14.3. Solid Solution Hardening -- 11.14.4. Precipitation/Dispersion Strengthening -- 11.15. Failure by Fracture; Crack Propagation -- 11.16. Failure by Creep -- 11.16.1. Superplasticity -- 11.17. Failure by Fatigue -- 11.18. Residual, Internal Stresses -- Epilogue: The Essence of Materials Science; Optimizing the Fatigue Strength of Ferritic Steels by Nitriding -- References
Summary This book offers a strong introduction to fundamental concepts on the basis of materials science. It conveys the central issue of materials science, distinguishing it from merely solid state physics and solid state chemistry, namely to develop models that provide the relation between the microstructure and the properties. The book is meant to be used in the beginning of a materials science and engineering study as well as throughout an entire undergraduate and even graduate study as a solid background against which specialized texts can be studied. Topics dealt with are "crystallography", "lattice defects", "microstructural analysis", "phase equilibria and transformations" and "mechanical strength". After the basic chapters the coverage of topics occurs to an extent surpassing what can be offered in a freshman's course. About the author Prof. Mittemeijer is one of the top scientists in materials science, whose perceptiveness and insight have led to important achievements. This book witnesses of his knowledge and panoramic overview and profound understanding of the field. He is a director of the Max Planck Institute for Metals Research in Stuttgart
Analysis materialen
materials
metalen
metals
mechanica
mechanics
fysica
physics
fysische chemie
physical chemistry
materiaalkunde
materials science
Engineering (General)
Techniek (algemeen)
Bibliography Includes bibliographical references and index
Notes Print version record
Subject Materials science.
Chimie.
Science des matériaux.
Materials science
Form Electronic book
ISBN 9783642105005
3642105009
9783642104992
3642104991
Other Titles Fundamentals of materials science : The microstructure-property relationship using metals as model systems