Limit search to available items
Book Cover
E-book

Title Biomechanics of hard tissues : modeling, testing, and materials / edited by Andreas Öchsner, Waqar Ahmed
Published Weinheim : Wiley-VCH, [2010]
©2010
Online access available from:
Wiley Online Books    View Resource Record  

Copies

Description 1 online resource (xvi, 306 pages) : illustrations (some color)
Contents 1.3.7. Collagen and its Properties -- 1.3.7.1. Molecular Structure -- 1.3.8. Geometry of Triple Helix -- 1.3.9. Polymer Thermodynamics -- 1.3.9.1. Thermodynamics -- 1.3.9.2. Ideal Chain -- 1.3.9.3. Wormlike Chain -- 1.3.9.4. Architecture of Biological Fibers -- 1.3.9.5. Architecture of Collagen Fibers in Human Osteon -- 1.3.9.6. Collagen Elasticity -- 1.4. Remarks and Conclusions -- 1.5. Comments -- 1.6. Acknowledgments -- References -- Further Reading -- 2. Numerical Simulation of Bone Remodeling Process Considering Interface Tissue Differentiation in Total Hip Replacements / Carlos R. M. Roesler -- 2.1. Introduction -- 2.2. Mechanical Adaptation of Bone -- 2.3. Constitutive Models -- 2.3.1. Bone Constitutive Model -- 2.3.2. Interface Constitutive Model -- 2.3.3. Model for Periprosthetic Adaptation -- 2.3.4. Model for Interfacial Adaptation -- 2.4. Numerical Examples -- 2.5. Final Remarks -- 2.6. Acknowledgments -- References -- 3. Bone as a Composite Material / Virginia L. Ferguson -- 3.1. Introduction -- 3.2. Bone Phases -- 3.2.1. Organic
10.4. Multicriteria Formulation for Hip Stem Design -- 10.4.1. Design Variables and Geometry -- 10.4.2. Objective Function for Interface Displacement -- 10.4.3. Objective Function for Interface Stress -- 10.4.4. Objective Function for Bone Remodeling -- 10.4.5. Multicriteria Objective Function -- 10.5. Computational Model -- 10.5.1. Optimization Algorithm -- 10.5.2. Finite Element Model -- 10.6. Optimal Geometries Analysis -- 10.6.1. Optimal Geometry for Tangential Interfacial Displacement -- fd -- 10.6.2. Optimal Geometry for Normal Contact Stress -ft -- 10.6.3. Optimal Geometry for Remodeling -fr -- 10.6.4. Multicriteria Optimal Geometries -fmc -- 10.7. Long-Term Performance of Optimized Implants -- 10.8. Concluding Remarks -- References
3.2.2. Mineral -- 3.2.3. Physical Structure of Bone Material -- 3.2.4. Water -- 3.3. Bone Phase Material Properties -- 3.3.1. Organic Matrix -- 3.3.2. Mineral Phase -- 3.3.3. Water -- 3.3.4. Elastic Modulus of Composite Materials -- 3.4. Bone as a Composite: Macroscopic Effects -- 3.5. Bone as a Composite: Microscale Effects -- 3.6. Bone as a Composite: Anisotropy Effects -- 3.7. Bone as a Composite: Implications -- References -- 4. Mechanobiological Models for Bone Tissue. Applications to Implant Design / Manuel Doblare -- 4.1. Introduction -- 4.2. Biological and Mechanobiological Factors in Bone Remodeling and Bone Fracture Healing -- 4.2.1. Bone Remodeling -- 4.2.2. Bone Fracture Healing -- 4.3. Phenomenological Models of Bone Remodeling -- 4.4. Mechanistic Models of Bone Remodeling -- 4.5. Examples of Application of Bone Remodeling Models to Implant Design -- 4.6. Models of Tissue Differentiation. Application to Bone Fracture Healing -- 4.7. Mechanistic Models of Bone Fracture Healing -- 4.8. Examples of Application of Bone Fracture Healing Models to Implant Design
4.9. Concluding Remarks -- References -- 5. Biomechanical Testing of Orthopedic Implants; Aspects of Tribology and Simulation / Yoshitaka Nakanishi -- 5.1. Introduction -- 5.2. Tribological Testing of Orthopedic Implants -- 5.3. Tribological Testing of Tissue from a Living Body -- 5.4. Theoretical Analysis for Tribological Issues -- References -- 6. Constitutive Modeling of the Mechanical Behavior of Trabecular Bone -- Continuum Mechanical Approaches / Seyed Mohammad Hossein Hosseini -- 6.1. Introduction -- 6.2. Summary of Elasticity Theory and Continuum Mechanics -- 6.2.1. Stress Tensor and Decomposition -- 6.2.2. Invariants -- 6.3. Constitutive Equations -- 6.3.1. Linear Elastic Behavior: Generalized Hooke's Law for Isotropic Materials -- 6.3.2. Linear Elastic Behavior: Generalized Hooke's Law for Orthotopic Materials -- 6.3.3. Linear Elastic Behavior: Generalized Hooke's Law for Orthotropic Materials with Cubic Structure -- 6.3.4. Linear Elastic Behavior: Generalized Hooke's Law for Transverse Isotropic Materials -- 6.3.5. Plastic Behavior, Failure, and Limit Surface -- 6.4. The Structure of Trabecular Bone and Modeling Approaches
6.4.1. Structural Analogies: Cellular Plastics and Metals -- 6.5. Conclusions -- References -- 7. Mechanical and Magnetic Stimulation on Cells for Bone Regeneration / Kuo-Kang Liu -- 7.1. Introduction -- 7.2. Mechanical Stimulation on Cells -- 7.2.1. Various Mechanical Stimulations -- 7.2.2. Techniques for Applying Mechanical Loading -- 7.2.3. Mechanotransduction -- 7.2.4. Mechanical Influences on Stem Cell -- 7.3. Magnetic Stimulation on Cells -- 7.3.1. Magnetic Nanoparticles for Cell Stimulation -- 7.3.1.1. Properties of Magnetic Nanoparticles -- 7.3.1.2. Functionalization of Magnetic Nanoparticles -- 7.3.2. Magnetic Stimulation -- 7.3.2.1. Magnetic Pulling -- 7.3.2.2. Magnetic Twisting -- 7.3.3. Limitation of Using Magnetic Nanoparticles for Cell Stimulation -- 7.3.4. Magnetic Stimulation and Cell Conditioning for Tissue Regeneration -- 7.4. Summary -- References -- 8. Joint Replacement Implants / Duncan E. T. Shepherd -- 8.1. Introduction -- 8.2. Biomaterials for Joint Replacement Implants -- 8.3. Joint Replacement Implants for Weight-Bearing Joints -- 8.3.1. Introduction -- 8.3.2. Hip Joint Replacement
8.3.3. Knee Joint Replacement -- 8.3.4. Ankle Joint Replacement -- 8.3.5. Methods of Fixation for Weight-Bearing Joint Replacement Implants -- 8.4. Joint Replacement Implants for Joints of the Hand and Wrist -- 8.4.1. Introduction -- 8.4.2. Finger Joint Replacement -- 8.4.3. Wrist Joint Replacement -- 8.5. Design of Joint Replacement Implants -- 8.5.1. Introduction -- 8.5.2. Feasibility -- 8.5.3. Design -- 8.5.4. Verification -- 8.5.5. Manufacture -- 8.5.6. Validation -- 8.5.7. Design Transfer -- 8.5.8. Design Changes -- 8.6. Conclusions -- References -- 9. Interstitial Fluid Movement in Cortical Bone Tissue / Stephen C. Cowin -- 9.1. Introduction -- 9.2. Arterial Supply -- 9.2.1. Overview of the Arterial System in Bone -- 9.2.2. Dynamics of the Arterial System -- 9.2.3. Transcortical Arterial Hemodynamics -- 9.2.4. The Arterial System in Small Animals may be Different from that in Humans -- 9.3. Microvascular Network of the Medullary Canal -- 9.4. Microvascular Network of Cortical Bone -- 9.5. Venous Drainage of Bone -- 9.6. Bone Lymphatics and Blood Vessel Trans-Wall Transport
9.7. The Levels of Bone Porosity and their Bone Interfaces -- 9.7.1. The Vascular Porosity (PV) -- 9.7.2. The Lacunar-Canalicular Porosity (PLC) -- 9.7.3. The Collagen-Hydroxyapatite Porosity (PCA) -- 9.7.4. Cancellous Bone Porosity -- 9.7.5. The Interfaces between the Levels of Bone Porosity -- 9.8. Interstitial Fluid Flow -- 9.8.1. The Different Fluid Pressures in Long Bones (Blood Pressure, Interstitial Fluid Pressure, and Intramedullary Pressure) -- 9.8.2. Interstitial Flow and Mechanosensation -- 9.8.3. Electrokinetic Effects in Bone -- 9.8.4. The Poroelastic Model for the Cortical Bone -- 9.8.5. Interchange of Interstitial Fluid between the Vascular and Lacunar-Canalicular Porosities -- 9.8.6. Implications for the Determination of the Permeabilities -- References -- 10. Bone Implant Design Using Optimization Methods / Joao Folgado -- 10.1. Introduction -- 10.2. Optimization Methods for Implant Design -- 10.2.1. Cemented Stems -- 10.2.2. Uncemented Stems -- 10.3. Design Requirements for a Cementless Hip Stem -- 10.3.1. Implant Stability -- 10.3.2. Stress Shielding Effect
Machine generated contents note 1. Bone and Cartilage -- its Structure and Physical Properties / Ryszard Wojnar -- 1.1. Introduction -- 1.1.1. The Structure of Living Organisms -- 1.1.2. Growth of Living Organisms -- 1.1.2.1. Ring-Shaped Grain Boundary -- 1.1.3. Planarity of Biological Structures -- 1.2. Macroscopic Structure of the Bone -- 1.2.1. Growth of the Bone -- 1.2.2. Structure of the Body -- 1.2.3. Macroscopic Structure of Skeleton -- 1.2.4. Apatite in the Bone -- 1.2.5. Structure of the Bone -- 1.3. Microscopic Structure of the Bone -- 1.3.1. General -- 1.3.2. Osteon -- 1.3.3. Bone Innervation -- 1.3.3.1. Anatomy of Bone Innervation -- 1.3.4. Bone Cells -- 1.3.4.1. Cells -- 1.3.4.2. Cell Membrane -- 1.3.4.3. Membrane Transport -- 1.3.4.4. Bone Cell Types -- 1.3.4.5. Osteoclasts -- 1.3.5. Cellular Image -- OPG/RANK/RANKL Signaling System -- 1.3.5.1. Osteoprotegerin -- 1.3.5.2. RANK/RANKL -- 1.3.5.3. TACE -- 1.3.5.4. Bone Modeling and Remodeling -- 1.3.6. Proteins and Amino Acids
Summary This monograph assembles expert knowledge on the latest biomechanical modeling and testing of hard tissues, coupled with a concise introduction to the structural and physical properties of bone and cartilage. A strong focus lies on the current advances in understanding bone structure and function from a materials science perspective, providing practical knowledge on how to model, simulate and predict the mechanical behavior of bone. The book presents directly applicable methods for designing and testing the performance of artificial bones and joint replacements, while addressing innovative and
Notes Title from digital title page (viewed on February 23, 2011)
Bibliography Includes bibliographical references and index
Notes Also available in print
Mode of access: World Wide Web
System requirements: Internet connectivity, World Wide Web browser, and Adobe Acrobat
Description based on print version record
Subject Biomechanics.
Human mechanics.
Musculoskeletal system -- Mechanical properties.
Form Electronic book
Author Ahmed, Waqar.
Öchsner, Andreas.
Wiley InterScience (Online service)
ISBN 3527324313
3527632735 (electronic bk.)
3527632743 (electronic bk.)
9783527324316
9783527632732 (electronic bk.)
9783527632749 (electronic bk.)